|nterrupt handling

Andrew N. Sloss (asloss@arm.com)

April 25th, 2001

CHAPTER 1 |nterrupt handling

Handling interrupts is at the heart of an embedded system. By managing the inter -
action with external systems through effective use of interrupts can dramatically
improve system efficiency and the use of processing resources. The actual process
of determining a good handling method can be complicated, challenging and fun.
Numerous actions are occurring simultaneously at a single point and these actions
have to be handled fast and efficiently. This chapter will provide a practical guide
to designing an interrupt handler and discuss the various trade-offs between the
different methods. The methods covered will be as follows:

* Non-nested interrupt handler

* Nested interrupt handler

* Re-entrant nested interrupt handler
* Prioritized interrupt handler

Embedded systems have to handle real world events such as the detection of a key
being pressed, synchonization of video output, or handle the transmission and
reception of data packets for acommunication device. These events have to be han-
died in real time, which means an action has to take place within a particular time
period to process the event. For instance, when akey is pressed on an embedded
system it hasto respond quickly enough so that the user can see a character appear-
ing on the screen, without any noticeable delay. If an inordinate delay occurs the
user will perceive the system as being non-responsive.

Interrupt handling 1

Interrupt handling

An embedded system has to handle many events. An event halts the normal flow of
the processor. For ease of explanation, events can be divided into two types,
planned and unplanned. Planned events are events such as a key being pressed, a
timer producing an interrupt periodically, and software interrupt. Unplanned events
are data aborts, instruction aborts, and undefined instruction aborts. In this chapter
planned events will be called interrupts and unplanned events will be called excep-
tions. When an event occurs the normal flow of execution from one instruction to
the next is halted and re-directed to another instruction that is designed specifically
to handle that event. Once the event has been serviced the processor can resume
normal execution by setting the program counter to point to the instruction after the
instruction that was halted (except for data and prefetch abort, where instructions
may have to be re-executed).

At aphysical level, an interrupt is raised when the IRQ pin on the ARM coreis set
HIGH. Thetiming of the interrupt source can either follow the clock of the proces-
sor or hot. When the interrupt source follows the processor clock it is said to be a
synchronous interrupt source and when it does not follow the processor clock it is
said to an asynchronous interrupt source. See figure 1.1.

Asynchronous

Synchronous

Figure 1.1 Asynchronous and synchronous interrupt sources

Note: Internally all interrupts presented to the ARM core are synchronous.

* Anexample of aasynchronous interrupt is when akey is pressed the interrupt
pin on the processor is then set HIGH; identifying that an interrupt has occurred.

* Anexample of asynchronousinterrupt source iswhen areal time clock or timer
periodically setsthe interrupt pin HIGH.

In an embedded system there are usually multiple interrupt sources. These interrupt
sources share asingle pin. Thisis due to the fact that there are only two interrupt
pins available on the ARM core. The sharing is controlled by a piece of hardware
called an interrupt controller that allows individual interrupts to be either enabled

Interrupt handling

or disabled. The controller provides a set of programmabl e registers, which can be
used to read or write masks and obtain the interrupt status.

There are two ways to trigger an interrupt (edge or level). Both rely in achangein
voltage (See figure 1.2). The change can either be on the rising edge or a changein
voltage level.

3v

ov

3v

ov

Figure 1.2 Interrupt triggers (Top - level, and Bottom - rising edge)

From a software viewpoint the advantages and disadvantages are as follows:

* Rising Edge - interrupt will be triggered as the signal goes HIGH, but will not
be re-triggered until signal goes LOW and HIGH again.

* Levd - interrupt continuously active while signal isHIGH, so will keep re-enter
ing interrupt handler until signal is cleared. The interrupt can occur even if the
processor has not been powered up.

Note: most ARM microcontrollers have a trigger method that is software config-
urable.

Interrupts allow an embedded system to respond to multiple real world eventsin
rapid time. Thisisimportant for systems that have to handle complex mechanisms
such as alarge chemical plant or a mobile phone. To handle these demands a spe-
cial purpose operating systems has to be designed so that the reaction timeiskept to
aminimum. These operating systems are given the general name of Real Time
Operating Systems (RTOS). An RTOS can be applied to a broad range of applica-
tions.

For consistency the following definitions will be used in this chapter:

* A Task isan independent piece of code that can be executed at a particular
address in memory and has a hard coded stack and heap. These are normally
used in simple embedded systems without a memory management unit.

Interrupt handling 3

Interrupt handling

* A Processislike atask except that it executesin its own virtual address space
and has a stack and heap located within that virtual space. Processes can be
implemented on embedded systems that include a special device that changes
address space and paging (Memory Management Unit).

* Threads are similar to processes but can easily be assigned to be executed on a
different processor. For instance, a Symmetric Multi-Processor (SMP) systems
can have different threads running on different processors.

To handle multiple tasks a RTOS uses a number of different scheduling methods.
Each method has different advantages and disadvantages depending upon the appli-
cation. It isimportant that the tasks can communicate with each other, since they
will probably have to share resources (memory or peripherals). The resources are
normally protected by some mechanism, such as a semaphore (which will be dis-
cussed in more detail later on in this chapter), so that only one task can access the
resource at atime. If the sharing of datais possible then a message passing system
can be adopted to help communication between the various tasks. M essage passing
allows atask to pass data and control to another task without taking valuable
resources away from the entire embedded system.

The actual mechanism for swapping tasksis called a context switch. Preemptive
RTOS context switching occurs periodically when atimer interrupt israised. The
context switch will first save the state of the currently active task and then will
restore the state of the next task to be active. The next task chosen depends upon the
scheduling algorithm (i.e. round robin) adopted.

The example shown below in figure 1.3 shows a simple embedded system with 3
interrupt sources (a button, serial peripheral, and timer). The button signal will
occur when the button is pressed. These signals will be sent to the interrupt control-
ler. If the interrupt controller masks this interrupt then it will not be passed to the
processor. Once an interrupt occurs the software handler then will determine which
interrupt has occurred by reading the appropriate interrupt control register. The
interrupt can then be serviced by an interrupt service routine (1SR).

Interrupt handling

a| Interrupt Controller

| |
I |
| |
| ARM Processor |
| |
| |

|

Serial
| >
Timer Lo - |

Figure 1.3 Example of asimpleinterrupt system

Theinterrupt handler is the routine that is executed when an interrupt occurs and
an ISR isaroutine that acts on a particular interrupt. For instance, an ISR for a
key being pressed might determine which key has been pressed and then assign a
character that is then placed into a keyboard buffer (for later processing by the
operating system).

All embedded systems have to fight a battle with interrupt latency. Interrupt
latency istheinterval of time from an external interrupt request signal being
raised to the first interrupt service routine (ISR) instruction being fetched. Inter-
rupt latency is a combination of the hardware system and the software interrupt
handler. System designers have to balance the system to accommodate low inter-
rupt latency, as well as, handle multiple interrupts occurring simultaneously. If
the interrupts are not handled in atimely manner then the system may appear
slow. This becomes especially important if the application is safety critical.

There are two main methods to keep the interrupt latency low for a handler. The
first method isto use a nested interrupt handler. Figure 1.4 shows a nested inter-
rupt handler that allows further interrupts to occur even when servicing an exist-
ing interrupt. Thisis achieved by re-enabling the interrupts only when enough of
the processor context has been saved onto the stack. Once the nested interrupt has
been serviced then contral is relinquished back to the original interrupt service
routine. The second method isto have some form of Prioritization. Prioritization
works by allowing interrupts with an equal or higher prioritization to interrupt a
currently serviced routine. This means that the processor does not spend exces-
sive time handling the lower priority interrupts.

Interrupt handling 5

Interrupt handling

-» Interrupt handler
Normal Execution
Safe area

Interrupt (1)

Return ! Interrupt (2)

Interrupt (3)

Figure 1.4 A three level nested interrupt

If the embedded system is memory constrained. Then the handler and the ISR
should be written in Thumb code since Thumb provides higher code density on the
ARM processor. If Thumb codeis used then the designer has to be careful in swap-
ping the processor back into Thumb state when an interrupt occurs since the ARM
processor automatically reverts back to ARM state when an exception or interrupt
israised. The entry and exit code in an interrupt handler must be written in ARM
code, since the ARM automatically switchesto ARM state when servicing an
exception or interrupt. The exit code must bein ARM state, because the Thumb
instruction set does not contain the instructions required to return from an exception
or interrupt. As mentioned above the main body of the interrupt handler can bein
Thumb code to take advantage of code density and faster execution from 16-bit or
8-bit memory devices.

The rest of the chapter will cover these topicsin more detail:

* ARM Processor

* Event priorities

* Vector table

e Controlling interrupts

e Setting up the interrupt stacks

* Ingtaling and chaining interrupt handlers
e Simple non-nested interrupt handler

* Nested interrupt handler

* Re-entrant nested interrupt handler

Interrupt handling

e Prioritized interrupt handler (1) - Simple

* Prioritized interrupt handler (2) - Standard

* Prioritized interrupt handler (3) - Direct

e Prioritized interrupt handler (4) - Grouped

* Interworking with ARM and Thumb

* Context switching

* Semaphores

* Debug

* Genera notesfor Real Time Operating Systems

Notation: banked registersr13 and r14 are notated as:

r13_<node> or sp_<npde>
r14_<nmode> or |r_<npde>

Interrupt handling

Interrupt handling

ARM Processor

On power-up the ARM processor has al interrupts disabled until they are enabled
by theinitialization code. The interrupts are enabled and disabled by setting abitin
the Processor Satus Registers (PSR or CPSR where C stands for current). The
CPSR aso controls the processor mode (SVC, System, User etc.) and whether the
processor is decoding Thumb instructions. The top 4 bits of the PSR are reserved
for the conditional execution flags. In a privileged mode the program has full read
and write accessto CPSR but in an non-privileged mode the program can only read
the CPSR. When an interrupt or exception occurs the processor will go into the cor-
responding interrupt or exception mode and by doing so a subset of the main regis-
terswill be banked or swapped out and replaced with a set of mode registers.

Processor Mode Bit
Thunb Bit (1=Thunb state 0=ARM state)
I RQ (1=di sabl ed 0=enabl ed)

M
T
|

F FI Q (1=di sabl ed 0=enabl ed)

Figure 1.5 Bottom 8-bits of the Processor Status Register (PSR)

Ascan be seenin figure 1.5, bits 6 and 7 control the disabling and enabling of the
interrupt masks. The ARM processor has two interrupt inputs both can be thought
of as general purpose interrupts. Thefirst is called Interrupt Request (IRQ) and the
second is called a Fast Interrupt Request (FIQ).

Note: In privileged modes there is another register for each mode called Saved Pro-
cessor Satus Register (SPSR). The SPSRis used to save the current CPSR before
changing modes.

Interrupt handling

ARM Processor

Mode Source PSR[4:0] Symbol Purpose

User* - 0x10 USR Normal program execution mode

FIQ FIQ Ox11 FQ Fast Interrupt mode

IRQ IRQ 0x12 IRQ Interrupt mode

Supervisor SWI,Reset 0x13 svC Protected mode for operating systems

Abort Prefetch 0x17 ABT Virtual memory and/or memory protection
Abort, Data mode
Abort

Undefined Undefined Ox1b UND Software emulation of hardware co-proces-
Instruction sors mode

System - Ox1f SYS Run privileged operating system tasks

mode

Table 1.5 ARM Processor Modes

The User Mode (denoted with *) is the only mode that is a non-privileged mode. If
the CPSR is set to User mode then the only way for the processor to enter a privi-
leged mode is to either execute a SWI/Undefined instruction or if an exception
occur during code execution. The SWI call is normally provided as a function of
the RTOS. The SWI will have to set the CPSR mode to SVC or SY S and then
return to the halted program.

The processor automatically copies the CPSR into the SPSR for the mode being
entered when an exception occurs. This allows the original processor state to be
restored when the exception handler returns to normal program execution.

When an interrupt (IRQ or FIQ) occurs and the interrupts are enabled in the PSR
the ARM processor will continue executing the current instruction in the execution
stage of the pipeline before servicing the interrupt. This fact is particularly impor-
tant when designing a deterministic interrupt handler. As mentioned previously, on
the ARM processor either IRQ or FIQ interrupt can be separately enabled or dis-
abled. In general, FIQ's are reserved for high priority interrupts that require short
interrupt latency and IRQ’s are reserved for more general purpose interrupts. It is
recommended that RTOS's do not use the FIQ so that it can be used directly by an
application or specialized high-speed driver.

Figure 1.6 isan idealized overview of the different mode states. The m= denotes
that a change in state can be forced, due to the fact that the current active state is
privileged.

Interrupt handling 9

Interrupt handling

v

event
Power |

USR32 mFUSR32

A

node
change

nFSYS

SYS

event ~
m=UND

A

UND UND

A
A

| | DABT | event
FIQ | RESET m=SVC

A 4

sve reseT/ sw Y

event ~
m=DABT

A

DABT

A

ABT event
m=PABT

A

A 4

PABT

event ~

el RQ

A

I RQ

A
3
A

event
MR Q

A 4

FIQ FiQ

event ~

Figure 1.6 Simplified Finite State Machine on ARM Processor Modes

Interrupt handling

ARM Processor

User/System FIQ IRQ svCc Undef Abort
ro ro ro ro ro ro
rl rl rl rl rl rl
r2 r2 r2 r2 r2 r2
r3 3 3 3 3 3
r4 r4 r4 r4 r4 r4
s s s s s s
ré ré ré ré ré ré
7 7 7 7 7 7
r8 r8_fiq r8 r8 r8 r8
r9 ro_fiq r9 r9 r9 r9
r10 r1o_fiq r10 r10 r10 r10
ril ril fiq ri1 ril ri1 ril
ri2 r12_fiq ri2 ri2 ri2 ri2
ri3/sP ri3 fiq ri3_irq ri3 svc r13_undef r13_abort
r14/LR ri4 fiq rl4 _irq rl4 svc r14_undef rl4_abort
ri5/PC ri5/PC ri5/PC ri5/PC ri5/PC ri5/PC
cpsr
spsr_fiq spsr_irq spsr_svc spsr_undef spsr_abort

Figure 1.7 Register organization

Onthe ARM processor there are 17 registers always available in any mode and 18
registersin aprivileged mode. Each mode has a set of extraregisters called banked
registers (see figure 1.7). Banked registers are swapped in, whenever a mode
change occurs. These banked registers replace a subset of the previous mode regis-
ters. For IRQ, the registers banked are r13, r14, and the CPSR is copied into
SPSR _irg. For FIQ, the registers banked are r8 to r14, and the CPSR is copied into
SPSR_fiq. Each mode (see figure 1.7) has a set of banked registers. Each banked
register isdenoted by _irqor _fiq, so for example the banked register for r13in IRQ
modeisshownasri13_irq.

Note: Thisis particular useful when designing interrupt handlers since these regis-
ters can be used for a specific purpose without affecting the user registers of the
interrupted process or task. An efficient compiler can take advantage of these regis-
ters.

Interrupt handling 11

Interrupt handling

IRQ Interrupt

Figure 1.8 State machine showing an IRQ occurring

Figure 1.8 shows the state change when an IRQ occurs. Note for this example the
processor startsin state 1, which isin User mode. The IRQ bit (I-bit), within CPSR,
isset to 0 allowing an IRQ to interrupt the processor. When an IRQ occurs the pro-
cessor will automatically set the I-bit to 1, masking any further IRQ, see state 2.
The F-bit remains set to 0, hence alowing an FIQ to interrupt the processor. FIQ
are at ahigher priority to IRQ, and as such, they should not be masked out. When
the mode changes to IRQ mode the CPSR, of the previous mode, in this example
User mode is automatically copied into the IRQ SPSR. The software interrupt han-
dler then takes over in state 3.

FIQ Interrupt

Figure 1.9 State machine showing an FIQ occurring

Figure 1.9 shows a state change when an FIQ occurs. The processor goes through

the same procedure as an IRQ interrupt but instead of just masking further IRQ (I-
Bit) from occurring, the ARM processor also masks FIQ’s (F-bit). This means that
both the | and F bits will be set to 1 when entering the Software Handler is state 3.

12

Interrupt handling

Event priorities

In FIQ mode there is no requirement to save r8 to r12. This means these registers
can be used to hold temporary data, such as buffer pointers or counters. This makes
FIQ'sideal for servicing single source high-priority, low-latency interrupts.

Event priorities

The ARM processor has 7 events that can halt the normal sequential execution of
instructions. These events can occur simultaneously, so the processor has to adopt a
priority mechanism since not all events are created equal. For instance, the Reset is
the highest priority, since it occurs when the power to the ARM processor istog-
gled. This means that when areset occurs it takes precedence over all other events.
Similarly when a Data Abort occurs it takes precedence over all other events apart
from a Reset event. This priority mechanism is extremely important when multiple
events are occurring simultaneously since the ARM processor has to identify the
event with the high importance. The below table shows the priority level adopted
for each of the events:

Event Priority Bit
Reset

Data Abort
FIQ

IRQ

Pre-fetch Abort
SWiI

Undefined Instruction

OO, |O|FL,|T

ol bW |IN|PF

Figure 1.10 Event priority levels

When events are prioritized and multiple events occur simultaneously then the
highest event will win out. The event handlers are normal code sequences that can
be halted when other events occur. It isimportant to design a system such that the
event handlers themselves do not generate further events. If this occurs then the
system is susceptible to event loops (or Cascade of Events). Event loops will cor-
rupt the link register (r14) or overflow the event stack. The corruption of the link
register means that the stored return address from the event will be incorrect. Over-
flow means that the space allocated for the stack has been extended and may possi-
bly corrupt the heap.

Interrupt handling 13

Interrupt handling

When multiple events occur, the current instruction will be completed no matter
what event has been rai sed, except when a data abort occurs on the first offending
data address being accessed by LDM or STM. Each event will be dealt with accord-
ing to the priority level set out in figure 1.10. Thefollowing is alist of the events
and how they should be handled in order of priority:

Reset event occurs when the processor is powering up. Thisisthe highest prior-
ity event and shall be taken whenever it is signaled. Upon entry into the reset
handler the CPSR isin SV C mode and both IRQ and FIQ bitsare set to 1, mask-
ing any interrupts. The reset handler then initializes the system. This includes
setting up memory and caches etc. External interrupt sources can be initialized
before enabling IRQ or FIQ interrupts. This avoids the possibility of spurious
interrupts occurring before the appropriate handler has been setup. Note that one
of the very first actions that areset handler hasto do isto set up the stacks of all
the various modes. During the first few instructions of the handler it is assumed
that no exceptions or interrupts will occur. The code should be designed to
avoid using SWI's, Undefined instructions, and memory access. This meansthat
the reset handler has to be carefully implemented so that it maps directly on to
the target system, to avoid any exceptions or interrupt taking place during the
handling of reset.

Data Abort (DABT) events occur when the memory controller or MMU indicate
that an invalid memory address has been accessed, for exampleif thereisno
physical memory for an address, or if the processor does not currently have
access permissions to aregion of memory. The data abort is raised when
attempting to read or write to a particular memory address. Data aborts have a
higher priority than FIQ's, so that the DABT exception can be flagged and dealt
with after an FIQ interrupt has occurred. Up on entry into a Data Abort handler
IRQ'swill bedisabled (1-bit set 1), and FIQ will be enabled. This meansthat the
handler can be interrupted by an FIQ. If a pre-fetch abort occurs during an
instruction fetch then this indicates that the handler was placed in an area of
memory that was not currently paged in by the memory controller.

FIQ interrupt occurs when an external peripheral setsthe FIQ pin to nFIQ. An
FIQ interrupt isthe highest priority interrupt. Upon entry into FIQ handler the
core disables both IRQ’'s and FIQ's interrupts. This means no external source
can interrupt the processor unless the IRQ and/or FIQ are re-enabled by soft-
ware. It isdesirable that the FIQ handler is carefully designed to service the
interrupt efficiently. This same statement also appliesto Aborts, SWI’'sand to
IRQ interrupt handler.

IRQ interrupt occurs when an external peripheral setsthe IRQ pin. An IRQ
interrupt is the second highest priority interrupt. The IRQ handler will be

14

Interrupt handling

Vector table

entered, if neither a FIQ interrupt or data abort event has occurred. Upon entry
to the IRQ handler the IRQ interrupts are disabled. The IRQ’s (I-bit) should
remain disabled until the current interrupt source has been cleared.

* Prefetch Abort event occurs when an attempt to load an instruction resultsin a
memory fault. This exception only occurs if the instruction reaches the execu-
tion stage of the pipeline, and if none of the higher exceptions/interrupts have
been raised. Upon entry to the handler IRQ’swill be disabled, but the FIQ inter-
rupts will remain enabled. If an FIQ interrupt occurs it can be taken while ser-
vicing the Pre-fetch abort.

* SWI interrupt occurs when the SWI instruction has been fetched and decoded
successfully, and none of the other higher priority exceptionsinterrupts have
been flagged. Upon entry to the handler the CPSR will be set to SV C mode.
Note: if a SM calls another S (which isa common occurrence), then to avoid
corruption, the link register (LR & SPSR) must be stacked away before branch-
ing to the nested SWI.

* Undefined Instruction event occurs when an instruction not in the ARM/Thumb
instruction set has been fetched and decoded successfully, and none of the other
exceptiong/interrupts have been flagged. The ARM processor “asks” the copro-
cessorsif they can handle this coprocessor instruction (they have pipeline fol-
lowers, so they know which instruction isin the execute stage of the core). If no
coprocessor cliams the instruction then undefined instruction exception is
raised. If the instruction does not belong to a coprocessor then the Undefined
exception is raised immediately. Both the SWI instruction and Undefined
Instruction have the same level of priority, as they cannot occur at the same
instant in time. In other words the instruction being executed cannot be both a
SWI instruction and an Undefined instruction. Note: undefined instructions are
also used to provide software breakpoints when debugging in RAM.

\ector table

Asmentioned in previous chapters the vector table starts at 0x00000000 (ARMx20
processors can optionally locate the vector table address to Oxffff0000). A vector
table consists of aset of ARM instructions that manipulate the PC (i.e. B, MOV,
and LDR). These instructions cause the PC to jump to a specific location that can
handl e a specific exception or interrupt. The FIQ vector can avoid using B or LDR
instruction since the vector is at the end of the table. This means that the FIQ han-
dier can start at the FIQ vector location. FIQ's can save processor cycles by not
forcing the pipe to be flushed when the PC is manipulated. Figure 1.11 shows the

Interrupt handling 15

Interrupt handling

vector table and the modes which the processor is placed into when a specific event
occurs.

When avector uses LDR to load the address of the handler. The address of the han-
dier will be called indirectly, whereas aB (branch) instruction will go directly to the
handler. LDR’s have an advantage that they can address afull 32 bits, whereas B
are limited to 24 bits. LDR must load a constant located within a 4k of the vector

table but can branch to any location in the memory map.

I nterrupt/Exception/Reset Mode | Address

Reset svC 0x00000000
Undefined instruction UND 0x00000004
Software interrupt (SWI) SvC 0x00000008
Prefetch abort ABT 0x0000000c
Data abort ABT 0x00000010
Reserved N/A 0x00000014
IRQ IRQ 0x00000018
FIQ FIQ 0x0000001c

Figure 1.11 Vector Table

Figure 1.12 shows atypical vector table of areal system. The Undefined Instruction
handler islocated so that a simple branch is adequate, whereas the other vectors
require an indirect addressusing LDR.

0x00000000: Oxe59ffa38 8... : > |dr pc, 0x00000a40
0x00000004: 0xea000502 : b 0x1414

0x00000008: 0Oxe59ffa38 8... : | dr pc, 0x00000a48
0x0000000c: Oxe59ffa38 8.. | dr pc, 0x00000a4c
0x00000010: Oxe59ffa38 8.. | dr pc, 0x00000a50
0x00000014: Oxe59ffa38 8.. | dr pc, 0x00000a54
0x00000018: 0xe59ffa38 8.. | dr pc, 0x00000a58
0x0000001c: Oxe59ffa38 8.. | dr pc, 0x00000a5c¢c

Figure 1.12 Shows atypical vector table

When booting a system, quite often, the ROM islocated at 0x00000000. This
means that when SRAM is re-mapped to location 0x00000000 the vector table has
to be copied to SRAM at its default address prior to the remap. Thisis normally
achieved by the system initialization code. SRAM is normally re-mapped because

16

Interrupt handling

Controlling Interrupts

it iswider and faster than ROM; also allows vectors to be dynamically updated as
reguirements change during program execution.

Controlling Interrupts

The ARM processor has asimple way to control the enabling and disabling of inter-
rupts. The application has to be in a privileged mode.

voi d event _Enabl el RQ (voi d)
{

__asm{

MRS rl, CPSR

Bl C rl, rl, #0x80
MSR CPSR c, rl

}
}

First, the CPSR isfirst copied into r1. Then to enable IRQ interrupts bit 7 (IRQ bit)

of the register is set to 0. The updated register is copied back to the CPSR, which
enablesthe IRQ interrupts.

voi d event _Di sabl el RQ (voi d)
{

__asm{

MRS rl, CPSR
ORR rl, rl, #0x80
MSR CPSR c, rl

}
}

Note: interrupts are only enabled or disabled once the MSR instruction has com-

pleted the execution stage of the pipeline. Interrupts can still occur when the MSR
isin the pipeline.

To disable IRQ interrupts bit 7 has to be set to 1 (See above code). To enable FIQ

interrupts the following code is used.

voi d event _Enabl eFl Q (voi d)
{

__asm{

MRS rl, CPSR

Bl C rl, rl, #0x40
MSR CPSR c, r1

}

Interrupt handling 17

Interrupt handling

}

Enabling FIQ interruptsis similar to enabling the IRQ interrupts except that bit 6 of
the CPSR is manipulated. To disable FIQ interrupts the following inline assembler
code should be used. Once the IRQ and FIQ bits are set to 0 (enabling interrupts)
the core will not be able to masked out an interrupt.

voi d event _Di sabl eFl Q (voi d)
{

__asm{

MRS rl, CPSR
ORR rl, rl, #0x40
MSR CPSR c, r1

}
}

These functions could be called by a SWI handler; the processor would therefore be
in ARM state and in a privileged mode (SVC).

Note: there are no instructions to read or write to the CPSR in Thumb state. To
manipulate the CPSR the processor hasto be placed into ARM state.

Returning from an interrupt handler

Due to the processor pipeline, the return address from an interrupt or execpetion
handler has to be manipulated. The address which is stored in the link register will
include an offset. This means that the value of the offset has to be subtracted from
the link register. Figure 1.13 shows the various offsets for each event.

Event Offset Return from handler
Reset n/a n/a

Data Abort -8 SUBS pc, I r, #8

FIQ -4 SUBS pc, I r, #4

IRQ -4 SUBS pc, I 1, #4
Pre-fetch Abort -4 SUBS pc, I 1, #4

Swi 0 MOVS pc, It
Undefined Instruction 0 MWVS pe, It

Figure 1.13 Pointer counter offset

Interrupt handling

Returning from an interrupt handler

Note: the Data Abort is -8 indicating that the return address will be the original
instruction that caused the Data Abort.

For an interrupt a typical method of return isto use the following instruction:

SUBS pc, rl4, #4

The'S' at the end of the instruction indicates that the destination register isthe PC
and that the CPSR is automatically updated. The #4 is due to the fact that both the
IRQ and FIQ handlers must return one instruction before the instruction pointed to
by the link register.

Another method, which is morewidely used isto subtract 4 from the link register at
the beginning of the handler. For example:

SUB Ir,lr #4
<handl er code>
MOVS pc, Ir

And then finally, Ir is copied into the PC and the CPSR is updated. An alternative
approach, which will be described later in this chapter, isto :-

On entry:
SUB lr,lr,#4 ; adjust Ir
STMFD sp_irq!,{r0-r3,1r} ; working registers
<handl er code>

On exit:

LDVMFD sp_irq!,{r0-r3, pc}” ; restore registers

Note: ~ in this context means restore CPSR from SPSR

Interrupt handling 19

Interrupt handling

Setting up the interrupt stacks

Where the interrupt stack is placed depends upon the RTOS requirements and the
specific hardware being used. Figure 1.14 shows two possible designs. Design Ais
a standard design found on many ARM based systems. If the Interrupt Stack
expands into the Interrupt vector the target system will crash. Unless some check is
placed on the extension of the stack and some means to handle that error when it
occurs.

Before an interrupt can be enabled the IRQ mode stack has to be setup. Thisis nor-
mally accomplished in theinitialization code for the system. It isimportant that the
maximum size of the stack is known, since that size can be reserved for the inter-
rupt stack. Below are possible memory layouts with alinear address space.

A. i B. Interrupt Stackw
User Stack
User Stack i
Heap T
Heap T
Code Code
0x00008000
Interrupt Staokl
Interrupt Vectors Interrupt Vectors
0x00000000 0x00000000

Figure 1.14 Typical stack design layouts

The example in figure 1.14 shows two possible stack layouts. The first (A) shows
the tradition stack layout with the interrupt stack being stored underneath the code
segment. The second, layout (B) shows the interrupt stack at the top of the memory
above the user stack. One of the main advantages that layout (B) has over layout
(A) isthat the stack growsinto the user stack and thus does not corrupt the vector
table. For each mode a stack has to be setup. Thisis carried out every time the pro-
CesSor is reset.

20

Interrupt handling

Setting up the interrupt stacks

0x20000

User Stack

Unused

0x10000

static data

0x8000+code size

code

0x8000

I RQ Stack
0x8000 - 128

SVC Stack

0x8000 - 640

Free Space
0x20

Vectors
0x00

Figure 1.15 Simple stack layout

Figure 1.15 shows the layout of a simple system. Below shows a corresponding set
of definesthat map onto this memory layout. The user stack is set to 0x20000 and
the IRQ stack is set to 0x8000. Remember that the stack grows downwards. With
the SVC stack set to alocation 128 bytes below the user stack.

USR_St ack EQU 0x20000
| RQ_St ack EQU 0x8000
SVC St ack EQU | RQ_St ack- 128

Thefollowing is a set of defines that are used to change the processor modes. This
isachieved by OR-ing the various components of the PSR (e.g. Interrupt masks and
mode changes).

Interrupt handling 21

Interrupt handling

Usr 32md EQU 0x10
FI Q82md EQU ox11
| RQ82md EQU 0x12
sves2md EQU 0x13
Abt 32 EQU 0x17
Und32nd EQU 0x1b

The following define is useful sinceit can be used to disable both IRQ and FIQ
interrupts:

Nol nt EQU 0xcO0

Theinitialization code is required to set up the stack register for each processor
mode used. The below code assumes that the processor isin SV C mode. The stack
register, which is normally r13, is one of the registersthat is always banked when a
mode change occurs (see figure 1.7). The code below first shows how to initialize
the IRQ stack. For safety reasons, it is best to always make sure that interrupts are
disabled.

MoV r2, #Nolnt||R®2nd
MSR CPSR c, r2
LDR sp_irqg, =IRQ _Newstack

| RQ_NewsSt ack
DCD I RQ_St ack

Similarly for setting up SV C stack the CPSR has to be manipulated to force the pro-
cessor into SV C mode to gain access to the banked stack register r13 svc.

MoV r2, #Nolnt|SVC32md
MSR CPSR c, r2
LDR r13_svc, =SVC _NewSt ack

SVC_NewsSt ack
DCD SVC_St ack

Lastly the user stack register needs to be setup. Once in user mode the processor
cannot be forced into any other mode since User mode has no privilegesto write to
the CPSR (alternatively the processor can be put into System mode to setup the
User mode stack).

MoV r2, #Usr32md
MSR CPSR c, r2
LDR r13_usr, =USR NewSt ack

USR_NewSt ack
DCD USR_St ack

22

Interrupt handling

Installing and chaining interrupt handlers

The above method uses separate stacks for each mode rather than processing using
asingle stack. This has a number of advantages:

* If asingletask corrupts the stack then the whole system would become unsta-
ble. Using separate stacks allows for the possible debugging and isolation of an
errant task/s.

* It reduces stack memory requirements. If interrupts are serviced on the task’s
stack then separate space must be reserved on each task’s stack to handle the
interrupt.

Installing and chaining interrupt handlers

For ROM and/or FlashROM based systems the vector table can be fixed without
requiring installation. These systems tend to copy the complete vector table asa
block from ROM to RAM without requiring the installation of individual vectors.
Thistechniqueisnormally used in theinitialization stage since the memory tendsto
be re-mapped.

If the vector table is not located in ROM then a mechanism to install a handler can
be adopted. Installing an interrupt handler means placing avector entry for the IRQ
address (0x00000018) or FIQ address (0x0000001C), so that the entry pointsto the
appropriate handler. Chaining means saving the existing vector entry and inserting
anew entry. If the new inserted handler can not handle a particular interrupt source
this handler can return control to the original handler by called the saved vector
entry.

Note: Chaining interrupt handlers may increase the interrupt latency of the system.

Vector Table Vector Table

I RQ -] unknown | RQ [Handler]

Figure 1.16 Shows how the IRQ vector entry is re-directed to a handler

Interrupt handling 23

Interrupt handling

There are two main methods to re-direct a vector entry. These methods are either
using aB (branch) or an LDR (load relative). Thefirst example writtenin Cinstalls
avector entry using the B instruction. In the form shown in figure 1.15

Pattern Instruction

OxEAaaaaaa BAL <addr ess>

Figure 1.17 Pattern for a Branch instruction

The code below shows how to install a handler into the vector table. Thefirst
parameter is the address of the handler and the second parameter is the address of a
vector in the vector table. The vector address will be either 0x00000018 or
0x0000001C (IRQ or FIQ) depending upon the handler being installed

Note: subtracting 8 in calculating the offset is due to the pipeline since the PC will
be fetching the 2nd instruction after the instruction currently being executed. Shift-
ing two bits to the left will encode the address as required for the branch instruc-
tion, since the ARM processor can only branch to an address that isword aligned,
the ARM extends the branch range by not encoding the bottom 2 bits, which would
always be zero.

#def i ne BAL OxEA000000
unsi gned event _i nstal | Handl er (unsi gned handl er, unsi gned *vector)

vol atil e unsigned new_vector;
vol atil e unsigned ol d_vector;
unsi gned of f set;

of fset = ((handl er- (unsigned)vect or-0x8) >>2);

if (offset & 0xff000000) {

printf (“Error: Address out of range \n");
exit(1);

}

new_vector = BAL | offset;
ol d_vector = *vector;
*vector = new_vector;
return ol d_vector;

}

Interrupt handling

Installing and chaining interrupt handlers

If the range of the handler is beyond the range of the B instruction then a method
using LDR has to be adopted that takes advantage of the full 32 bit addressing
range. In the form shown in figure 1.18.

Pattern Instruction

OXES59FFi i i LDRM pc, <i mredi at e addr ess>

Figure 1.18 Pattern for aload immediate instruction

This meansthat an extramemory location (word) hasto be used to store the address
of the handler. Thislocation has to be local to the LDR instruction in the vector
table because the immediate address is an offset from the PC. Maximum offset is
OxFFF. Below is an example of how to call theinstall routine:

unsi gned address_i rqgHandl er;
event _i nstal | Handl er ((unsi gned) &ddress_irqHandl er, 0x000000018) ;

Note: the address_irgHandler has to be assigned before calling the install routine.

The routine below shows an implementation of an install handler for inserting an
LDR instruction into the vector table.

#define LDR 0xE59FF000
#define VOLATILE volatile unsigned

unsi gned event _i nstal | Handl er (unsi gned address, VOLATI LE *vector)

{
unsi gned new_vector;
unsi gned ol d_vector;

new_vector = LDR | ((address-(unsigned)vector-0x8);

ol d_vector = *vector;
*vector = new_vector;
return ol d_vector;

}

Chaining involves adapting the LDR insertion technique by first copying the previ-
ous vector and storing it in a new location. Once thisis complete a new vector can
be inserted into the vector table as shown in figure 1.18.

Interrupt handling 25

Interrupt handling

Vector Table Vect or Tabl e
IRQ | Handlerl | I RQ | Handler2 |
v
Handl er 1

Figure 1.18 Chaining of Interrupts

Once handler2 has been chained and an interrupt occurs, handler2 will identify the
source. |f the source is known to handler2 then the interrupt will be serviced. If the
interrupt source is unknown then handler 1 will be called. The chaining codein this
exampl e assumes that the interrupt vector entity for IRQ isin the form shownin
Figure 1.19.

Address Pattern Instruction
0x00000018 Oxe59f f a38 LDR pc, 0x00000a58

Figure 1.19 IRQ Entry in the vector table

Note: Chaining can be used to share an interrupt handler with a debug monitor but
care must be taken that the new interrupt latency does not cause time out issues
with the debugger.

The code below finds the address of the previous vector table entry and copiesit to
anew location chained_vector. Then the new handler handler2 can be inserted into
the vector table. This chained_vector addressis aglobal static and should be per-
manently in scope.

#define LDR OxE59FF000

static void event_chai nHandl er (unsigned handl er2, unsigned *vector)
{

unsi gned chai n_vec;

unsi gned *handl er 1;

chai n_vec = 0;

chai n_vec = *vector;

chai n_vec A= LDR;

handl er 1 = (volatile unsigned *) (vector+chai n_vec+0x8);
chai ned_vect or = *handl er 1;

*handl er 1 = handl er 2;

}

26

Interrupt handling

Simple non-nested interrupt handler

Smple non-nested interrupt handler

Usage Handles and services individual interrupts sequentially.

Interrupt latency High - cannot handle further interrupts occuring while an
interrupt is being serviced.

Advantages Relatively easy to implement and debug

Disadvantages Cannot be used to handle complex embedded systems with

multiple priority interrupts.

The simplest interrupt handler is a handler that is non-nested. This means that the
interrupts are disabled until control is returned back to the interrupted task or pro-
cess. A non-nested interrupt handler can service asingle interrupt at atime. Han-
dlers of thisform are not suitable for complex embedded systems which service
multiple interrupts with differing priority levels.

When the IRQ interrupt is raised the ARM processor will disable further IRQ inter-
rupts occurring. The processor will then set the PC to point to the correct entry in
the vector table and executes that instruction. Thisinstruction will ater the PC to
point to the interrupt handler.

Oncein theinterrupt code the interrupt handler has to first save the context, so that
the context can be restored upon return. The handler can now identify the interrupt
source and call the appropriate Interrupt Service Routine (1SR). After servicing the
interrupt the context can be restored and the PC manipulated to point back to next
instruction prior to the interruption.

Note: within the IRQ handler, IRQ interrupts will remain disabled until the handler
manipulates the CPSR to re-enable the interrupt or returns to the interrupted task.

Figure 1.20 shows the various stages that occur when an interrupt israised in asys-
tem that has implemented a simple non-nest interrupt handler.

Interrupt handling 27

Interrupt handling

Interrupt

Disable Interrupts

Save Context

3.

Interrupt Handler
Service Interrupt
Routine

Restore Context
6. Enable Interrupts

Figure 1.20 Simple non-nested interrupt handler

Return to 5.

Task

Each stage is explained in more detail below:

1. External source (for examplefrom aninterrupt controller) setsthe Interrupt flag.
Processor masks further external interrupts and vectors to the interrupt handler
viaan entry in the vector table.

2. Upon entry to the handler, the handler code saves the current context of the non
banked registers.

3. The handler then identifies the interrupt source and executes the appropriate
interrupt service routine (ISR).

4. ISR servicesthe interrupt.
5. Upon return from the | SR the handler restores the context.
6. Enablesinterrupts and return.

Thefollowing code is an example of asimplewrapper for an IRQ interrupt handler.
It assumes that the IRQ stack has been setup correctly.

SUB Ir, Ir, #4
STMFD sp_irq!, {r0-r3, r12, Ir}

{specific interrupt handl er and service routine code}
LDVFD sp_irq!, {r0-r3, rl2, pci”

Thefirst instruction sets the link register (r14) to return back to the correct location
in the interrupt task or process. As mentioned previously, because of the pipeline,

28

Interrupt handling

Simple non-nested interrupt handler

on entry to an IRQ handler the link register points 4 bytes beyond the return address
so the handler must subtract 4 to account for the discrepancy.

Note: the link register is stored on the stack. To return to the interrupted task the
link register contentsis restored from the stack to PC.

STMFD instruction saves the context by placing a subset of the register onto the
stack. To reduce interrupt latency a minimum number of registers should be saved.
Thetime taken to execute a STMFD or LDMFD instruction is proportionally to the
number of registers being transferred. Both these instructions are extremely useful
since they depart from the RISC philosophy due to code efficiency. The registers
are saved to the stack pointed to by the register r13 irqor r13 fig. If you are using
ahigh level language within your system it isimportant to understand the calling
convention as thiswill influence the decision on which registers will be saved on
the stack. For instance, the ARM compiler (armcc) preserves r4-r11 within the sub-
routine calls so there is no need to preserve them unless they are going to be used
by the interrupt handler. If no C routines are called it may not be necessary to save
all of theregisters. It is not necessary to savethe IRQ (or FIQ) SPSR register asthis
will not be destroyed by any subsequent interrupt since the interrupts will not re-
enable interrupts within a non-nested interrupt handler. Once the registers have
been saved on the stack it is now safe to call C functions within the interrupt han-
dler to process an interrupt.

At the end of the handler the LDMFD instruction will restore the context and return
from the interrupt handler. The " at the end of the LDMFD instruction means that
the CPSR will be restored from the SPSR. If the process was in Thumb state prior
to the interrupt occurring the processor will returned back to Thumb state. Finaly,
LR pointstwo instructions ahead of the interrupted instruction. By assigning the PC
to LR minus 4. The PC will point to the next instruction after interruption.

In this handler al processing is handled within the interrupt handler which returns
directly to the application. This handler is suitable for handling FIQ interrupts how-
ever it isnot suitable for handling IRQ’sin an RTOS environment.

Note: the'~ isonly valid if the PC isloaded at the same time. If the PC is not
loaded then "~ will mean restore user bank registers.

Oncetheinterrupt handler has been entered and the context has been saved the han-
dler must determine the interrupt source. The following code shows a simple exam-
ple on how to determine the interrupt source. IRQStatus is the address of the

Interrupt handling 29

Interrupt handling

interrupt status register. If the interrupt source is not determined then control is
passed to the chained debug monitor handler.

LDR ro, 1RQStatus
LDR ro, [r0]

TST r0, #0x0080

BNE timer_isr

TST r0, #0x0001

BNE button_isr

LDVFD sp!, {r0 - r3, Ir}
LDR pc, debug_nonitor

Nested interrupt handler

Usage Handles multiple interrupts without a priority assignment.
Interrupt latency Mediumto high.
Advantages Can enable interrupts before the servicing of an individual

interrupt is complete reducing interrupt latency.

Disadvantages Does not handle priorization of interrupts, so lower prior-
ity interrupts can block higher priority interrupts.

A nested interrupt handler allows for another interrupt to occur within the currently
called handler. Thisis achieved by re-enabling the interrupts before the handler has
fully serviced the current interrupt. For areal time system this feature increases the
complexity of the system. This complexity introduces the possibility of subtle tim-
ing issues that can cause a system failure. These subtle problems can be extremely
difficult to resolve. The nested interrupt method has to be designed carefully so that
these types of problems are avoided. Thisis achieved by protecting the context res-
toration from interruption, so that the next interrupt will not fill (overflow) the
stack, or corrupt any of the registers.

Note: the single goal of any nested interrupt handler isto respond to interrupts suf-
ficiently that the handler neither waits for asynchronous events, nor forces themto

wait for the handler. The second key point is that regular synchronous code is unaf-
fected by the variousinterruptions.

30

Interrupt handling

Nested interrupt handler

interrupt

Disable interrupt

2. Save Context

enter interrupt handler

return to task
3.
complete not complete
Service
Interrupt
4. Restore Context 5. Prepare stack
A
6. Switch to mode
7. A
Sart Constructing a Frame
8. Enable Interrupt
v
9' . e
Finish interrupt
Frame
Construction
return to task

Complete
Service
Routine

10.
interrupt

11. Restore Context

Figure 1.21 Nested interrupt handler

Interrupt handling

Interrupt handling

Dueto an increase in complexity, there are many standard problems that can be
observed if nested interrupts are supported. One of the main problemsis arace con-
dition where a cascade of interrupts occur. Thiswill cause acontinuous interruption
of the handler until either the interrupt stack was full (overflowing) or the registers
were corrupted. A designer has to balance efficiency with safety. Thisinvolves
using adefensive coding style that assumes problemswill occur. The system should
check the stack and protect against register corruption where possible.

Figure 1.21 shows a nested interrupt handler. As can been seen from the diagram
the handler is quite a bit more complicated than the simple non-nested interrupt
handler described in the previous section.

How stacks are organized is one of the first decisions a designer has to make when
designing a nested interrupt handler. There are two fundamental methods that can
be adopted. The first uses a single stack and the second uses multiple stacks. The
multiple stack method uses a stack for each interrupt and/or service routine. Having
multiple stacks increases the execution time and complexity of the handler. For a
time critical system these tend to be undesirable characteristics.

The nested interrupt handler entry code is identical to the simple non-nested inter-
rupt handler, except on exit, the handler tests a flag which is updated by the ISR.
The flag indicates whether further processing is required. If further processing is
not required then the service routine is complete and the handler can exit. If further
processing is required the handler may take severa actions; re-enabling interrupts
and/or perform a context switch.

Re-enabling interruptsinvolves switching out of IRQ mode (typically to SVC mode
or SY STEM mode). We cannot simply re-enable interrupts in IRQ mode as this
would lead to the link register (Ir_irq) being corrupted if an interrupt occurred after
abranch with link (BL) instruction. This problem will be discussed in more detail
in the next section called Re-entrant interrupt handler.

Asaside note, performing a context switch involves flattening (empting) the IRQ
stack as the handler should not perform a context switch while there is data on the
IRQ stack unlessthe handler can maintain a separate |RQ stack for each task which
is as mentioned previously undesirable. All registers saved on the |RQ stack must
be transferred to the task’s stack (typically the SV C stack). The remaining registers
must then be saved on the task stack. Thisis transferred to areserved block on the
stack called a stack frame.

32

Interrupt handling

Nested interrupt handler

The following code is an example of a nested interrupt handler, it is based on the
design shown in figure 1.21. Therest of this section will walk through the various
stages.

The example below uses aframe structure. All registers are saved in the frame
except for the stack pointer (r13). Thisis saved in the task control block (TCB).
The order of theregistersis unimportant except that FRAME_LR and FRAME_PC
should be the last two registersin the frame. Thisis because we will return with the
instruction

LDM A sp!, {lr, pc}”

It isimportant to note that there may be other registers that are required to be saved
in the stack frame. This requirement depends upon the RTOS or application being
developed. For example:

* Therl3 usrand Ir_usr registers, if the RTOS supports both User and SVC
modes.

* Thefloating point registersif you wish to support hardware floating point or
floating point emulation.

There are anumber of defines used in this example. The following defines are used
to manipulate the PSR.

Masknmd EQU 0x1f ; nmasks the processor node
SVC32md EQU 0x13 ; sets the processor nobde to SVC
| _Bit EQU 0x80 ; Enables and Disable IRQ interrupts

The next set of defines are for manipulating the stack frame. This is useful sinceif
interrupts are re-enabled the interrupted handler has to be able to store the registers
into the stack frame. In this example stack frames are stored on the SV C stack.

FRAVE_RO EQU 0x00
FRAVE_RL EQU FRAME_RO+4
FRANE_R2 EQU FRAME_RL+4
FRAVE_R3 EQU FRAME_R2+4
FRAVE_R4 EQU FRAME_R3+4
FRANE_R5 EQU FRAME_R4+4
FRAVE_R6 EQU FRAME_R5+4
FRAVE_R7 EQU FRAME_R6+4
FRANE_R8 EQU FRAME_R7+4
FRAVE_R9 EQU FRAME_R8+4
FRAVE_RI0 EQU FRAME_RO+4
FRAVE_R11 EQU FRAME_R10+4
FRAVE_R12 EQU FRAME_RL1+4
FRAVE_PSR EQU FRAME_RL2+4
FRAME_LR EQU FRAME_PSR+4
FRAVE_PC EQU FRAME_LR+4
FRANVE_SI ZE EQU FRAME_PC+4

Interrupt handling 33

Interrupt handling

The entry point for the handler (again thisisfor an IRQ handler) isthe same code as
the simple non-nested interrupt handler. The link register is set to point to the cor-
rect instruction and the context is saved on to the IRQ stack (r13 _irg/sp_irq).

2 IRQ_Entry
IRQ SuUB Ir_irqg, Ir_irq, #4
STNVDB sp_irql, {r0-r3, r12, Ir_irq}

<interrupt service code>

Theinterrupt service code, after the entry point, services the interrupt. Once com-
plete or partially complete control is passed back to the handler, which then calls
the subroutine read RescheduleFlag. The read RescheduleFlag routine then deter-
mines whether further processing is required. It returns anon-zero valuein rQ if no
further processing is required, otherwise it returns 0.

3IRQ BL read_Reschedul eFl ag

Thereturn flag in rO isthen tested and if not equal to O the handler restore context
and then returns control back to the halted task.

3IrQ WP ro, #0

4IRQ LDWNEI A sp_irq!, {r0-r3, ri12, pc}i”

If rOisset to 0, indicating that further processing is required. The first operation is
to savethe spsr, so acopy of the spsr_irq is moved into r2. SPSR can then be stored
in the stack frame by the handler later onin the code.

‘ 5IRQ ‘ MRS r2, spsr_irq

Then the IRQ stack address (sp_irq) is copied into rO for use later. The next step is
to flatten (empty) the IRQ stack. Thisis done by adding 6*4 bytes to the stack.
Note that since the stack grows downwards, the ADD operation will reset the stack.
The handler does not need to worry about the data on the IRQ stack being corrupted
by another nested interrupt, as interrupts are still disabled and the handler will not
re-enable the interrupts until the data on the IRQ stack has been recovered.

5IRQ MoV r0, sp_irq
ADD sp_irq, sp_irqg, #6*4

The handler then switches to SVC mode, interrupts are still disabled. The cpsris
copied to r1 and modified to set SV C mode. rl isthen written back to the cpsr and

Interrupt handling

Nested interrupt handler

the current mode changes to SVC mode. A copy of the new cpsrisleftinrl for

later use.
6IRQ MRS rl, cpsr
BI C rl, ri1, #Masknd
ORR ri, ri1, #svc3znd
MSR cpsr, rl

The next stage isto create a stack frame. Thisis achieved by extending the stack by
the frame size. Once the stack frame has been created then registersr4 to r1l can be
saved in to the stack frame. Thiswill free up enough registersto allow usto recover
the remaining registers from the IRQ stack (still pointed to by r0).

Tsvc

SuB
STM A
LDM A

sp_svc, sp_svc, #FRAMVE_SI ZE- FRAME_R4
sp_svc, {r4-r11}
ro, {r4-r9}

The stack frame will contain the information shown in figure 1.22. The only regis-
tersthat are not in the frame are the regi sters which are stored upon entry to the IRQ

handler.

Label Offset Register
FRAME_RO +0

FRAME_R1 +4

FRAME_R2 +8

FRAME_R3 +12

FRAME_R4 +16 r4
FRAME_R5 +20 15
FRAME_R6 +24 6
FRAME_R7 +28 r7
FRAME_RS8 +32 8
FRAME_R9 +36 r9
FRAME_R10 +40 r10
FRAME_R11 +44 rii
FRAME_R12 +48

FRAME_PSR +52

FRAME_LR +56

FRAME_PC +60

Figure 1.22 SV C stack frame

Interrupt handling

35

Interrupt handling

Figure 1.23 shows which registersin SV C mode correspond to existing IRQ regis-
ters.

Registers

(SVC) Context

r4 r0

r5 rl

ré r2

r7 r3

8 r12

r9 Ir (previous interrupt)

Figure 1.23 Data retrieved from the IRQ stack

The handler has now retrieved all the data from the IRQ stack so it is now safe to
re-enable interrupts.

BIC rl, rl, # _Bit

8
sve MBR cpsr, ril

IRQ interrupts are now re-enabled and the handler has saved all the important regis-
ter. The handler can now complete the SV C stack frame.

QS\/C STMDB sp!, {r4-r7}
STR r2, [sp, #FRAME_PSR]
STR r8, [sp, #FRAME_R12]
STR r9, [sp, #FRAMVE_PC]
STR Ir, [sp, #FRAME_LR]

Figure 1.24 Shows a completed stack frame which can either be used for a context
switch or can be used to handle nested interrupts.

36

Interrupt handling

Nested interrupt handler

Label Offset Register
FRAME_RO +0 r0
FRAME_R1 +4 rl
FRAME_R2 +8 r2
FRAME_R3 +12 r3
FRAME_R4 +16 r4
FRAME_R5 +20 5
FRAME_R6 +24 6
FRAME_R7 +28 r7
FRAME_RS8 +32 r8
FRAME_R9 +36 r9
FRAME_R10 +40 r10
FRAME_R11 +44 ril
FRAME_R12 +48 r12
FRAME_PSR +52 PSR (IRQ)
FRAME_LR +56 LR
FRAME_PC +60 LR (IRQ)

Figure 1.24 Complete SV C stack frame has been setup.

At this stage the remainder of the interrupt servicing may be handled. A context
switch may be performed by saving the current value of SP in the current task’s
control block and loading a new value for SP from the new task’s control block. For
example, if rO contains a pointer to the current task’s control block and r1 containsa
pointer to the new task’s control block the following would perform the context

switch.

103\/(:

STR
LDR

sp_svc, [r0, TCB_SP]
sp_svc, [rl, TCB_SP]

It is now possible to return to the interrupted task/handler, or to another task if a
context switch occurred.

1lgyc

LDM A
VSR
LDM A

sp_svc!, {r0-r12,

SPSR, Ir

sp_svc!, {lr_svc,

Ir}

pcir

Interrupt handling

37

Interrupt handling

Re-entrant interrupt handler

Usage Handle multiple interrupts that can be prioritized.
Interrupt latency Low

Advantages Handling of interrupts with differing priorities.
Disadvantages Interrupt handler tends to be more complex

A re-entrant interrupt handler is a method of handling multiple interrupts where
interrupts are filtered by priority. Thisisimportant since there is a requirement that
interrupts with higher priority have alower latency. Thistype of filtering cannot be
achieved using the conventional nested interrupt handler.

The basic difference between a re-entrant interrupt handler and a nested interrupt
handler is that the interrupts are re-enabled early on in the interrupt handler to
achieve low interrupt latency. There are a number of issues relating to re-enabling
the interrupts early, which are described in more detail later in this section.

Note: all interruptsin are-entrant interrupt handler must be serviced in SVC maode,
System mode, or an Abort mode on the ARM processor.

If interrupts are re-enabled in an interrupt mode and the interrupt routine performs a
BL (subroutine call) instruction, the subroutine return address will be set in the
Ir_irqg register. This address would be subsequently destroyed by an interrupt, which
would overwrite the return addressinto Ir_irq register. To avoid this, the interrupt
routine should swap into SVC mode or SY STEM. The BL instruction can then use
Ir_svc register to store the subroutine address. The interrupts must be disabled at
source by setting a bit in the interrupt controller before re-enabling interrupts via
the CPSR.

If interrupts are re-enabled in the CPSR before processing is complete and the inter-
rupt sourceis not disabled, an interrupt will beimmediately re-generated leading to
an infinite interrupt sequence or race condition. Most interrupt controllers have an
interrupt mask register which allows you to mask out one or moreinterruptsleaving
the remainder of the interrupts enabled.

Note: watchdog timers can be a useful method to reset a systemthat has goneinto a
race condition.

The interrupt stack is unused since interrupts are serviced in SVC mode (i.e. on the
task’s stack). Instead the IRQ stack pointer (r13) is used to point to a 12 byte struc-
ture which will be used to store some registers temporarily on interrupt entry. Inthe

38

Interrupt handling

Re-entrant interrupt handler

following code r13 isused instead of SP to indicate that r13is not being used as a
stack pointer although in fact these are synonymous.

interrupt
= enter interrupt handler
2 Save Partial Context
3. Change Mode
4. Reserve Sack Space
and Save Complete }
Context 5. (Clear External Interrupt)
6. Enable Interrupt
Service
return to task [Interrupt
servicing complete
4 Restore Context < Enable External Interrupt)
9. servicing
incomplete
10. Re-save Context
return to task
11. X .
Continue interrupt
12 Restore Context Servicing
’ Interrupt

Figure 1.25 Re-entrant interrupt handler

Interrupt handling

39

Interrupt handling

Itis paramount for are-entrant interrupt handler to operate effectively that the inter-
rupts be prioritized. If the interrupts are not prioritized the system latency degrades
to that of a nested interrupt handler as lower priority interrupts will be able to pre-
empt the servicing of ahigher priority interrupt. This can lead to the locking out of
higher priority interrupts for the duration of the servicing of alower priority inter-
rupt.

Note: that r13 irq (sp_irg) has been set up to point to a 12 byte data structure, and
does not point to a standard IRQ stack. The following are the offsets for the data
itemsin the structure:

| RQ_RO EQU 0
| RQ_SPSR EQU 4
| RQ LR EQU 8

Aswith al interrupt handlers there are some standard definitions that are required
to manipulate the CPSR/SPSR registers:

Masknd EQU 0x1f ; masks the processor node
SvC32md EQU 0x13 ; sets the processor npde to SVC
| _Bit EQU 0x80 ; Enables and Disable IRQ interrupts

The start of the handler includes a normal interrupt entry point, with 4 being sub-
tracted from theIr_irq.

2IRQ I RQ Entry
SUB Ir_irqg, Ir_irq, #4

It is now important to assign values to the various fields in the data structure
pointed to by r13 irg. The registersthat are recorded are Ir_irq, spsr_irg and rO.
Ther0 register is used to transfer a pointer to the data structure when swapping to
SV C mode since rO will not be banked (r13_irg cannot be used for this purpose as
it isnot visible from SV C mode).

2IRQ STR Ir_irqg, [r13_irg, # RQLR
MRS Ir_irqg, spsr
STR Ir_irqg, [r13_irqg, #l RQ _SPSR

STR r0, [r13_irqg, #l RQ RO]

Now save the data structure pointed to by r13_irq by copying the address into rO.

2IRQ MoV r0, ri3_irq
Offset (fromr13_irq) Value
+0 r0 (on entry)

40

Interrupt handling

Re-entrant interrupt handler

Offset (from r13_irq) Value
+4 spsr_irq
+8 Ir_irg
Figure 1.26 Data structure

The handler will now set the processor into SV C mode using the standard proce-
dure of manipulating the CPSR:

3I RO MRS rl4_irqg, CPSR
BI C rl4_irq, rl4_irq, #Masknmd
ORR rl4_irqg, rl4_irq, #SvC32nd
MSR CPSR c, rl4_irq

The processor isnow in SVC mode. Thelink register for SVC modeis saved on the
SV C stack. -8 provides room on the stack for two 32-bit words.

4S\/C STR Ir_svec, [sp_svc, #-8]!

Ir_irgisthen recovered and stored on the SV C stack. Both the link registersfor IRQ
and SV C are now stored on the SV C stack.

4svc LDR Ir_svc, [r0, # RQLR
STR I r_svc, [sp_svc, #4]

The rest of the IRQ context isnow recovered from the data structure passed into the
SVCmode. Therl4 svc(orlr_svc) will now containthe SPSRfor the|RQ mode.

LDR r14_svc, [r0, #l RQ SPSR]

4
sve LDR r0, [r0, # RQRO]

Thevolatile registers are now saved onto the SV C stack. r8 is used to hold the inter-
rupt mask for the interrupts which have been disabled in this interrupt handler and
which need to be re-enabled | ater.

4S\/C STMDB sp_svc!, {r0-r3, r8, rl2, rl4}

Here we disable the interrupt source(s) which caused this interrupt. A real world
example would probably prioritize the interrupts and disable all interrupts lower
than the current priority to prevent alow priority interrupt from locking out a high
priority interrupt. The description of interrupt prioritizing of interrupts will occur

Interrupt handling 41

Interrupt handling

later oninthis chapter. The labelsic_Base, IRQSatus, IRQENnableSet, and IRQEN-
ableClear will be discussed in more detail in the next section.

SSVC LDR rl4_svc, =ic_Base
LDR r8, [rl4_svc, #l RQStatus]
STR r8, [r14, #l RQEnabl eC ear]

Since the interrupt source has been cleared it is now safe to re-enable interrupts.
Thisis achieved by switching the|_Bit.

6. MRS ri14, cpsr_svc
sve BI C rl4, ril4, # _Bit
MSR cpsr_svec, ril4

It is now possible to process the interrupt. The interrupt processing should not
attempt to do a context switch as the source interrupt is still disabled. If during the
interrupt processing a context switch is needed it should set a flag which will be
picked up later by the interrupt handler

Tsve BL process_i nterrupt

It is now safe to re-enable interrupts at the source as we have processed it and the
original source of the interrupt is removed.

9%ve LDR

STR

ri4, =1C_Base

r8,

[r14, #l RQEnabl eSet]

The handler needs to check if further processor is required. If the returned valueis
non-zero, in rO, then no further processing is required.

QSVC BL read_Reschedul eFl ag

Thereturn flag in rO isthen tested and if not equal to O the handler restore context
and then returns control back to the halted task.

8sve owP ro, #0
LDWNEI A sp_svc!, {r0-r3, r8, r12, Ir_svc}
MSRNE spsr_svc, |r_svc

LDWNEI A sp_svc!, {lr_svc, pc}”?

A stack frame now has to be created so that the service routine can complete. This
can be achieve by restoring part of the context and then storing the complete con-
text back on to the SV C stack:

LDM A sp_svc!, {r0-r3, r8}

10
sve STMDB sp_svc!, {r0-r11}

42

Interrupt handling

Re-entrant interrupt handler

Call the subroutine continue_servicing. This subroutine will finish the servicing of
the interrupt:

‘ 11$VC ‘ BL continue_servicing

interrupt

Disable Interrupts

Save Minimum Context

3 v
Get External Interrupt
Status

a v

Identify Interrupt Priority
& mask off lower priority
interrupts and enable IRQs

5. v

Jump to service routine

6. v

Create a context

Service

return to task Interrupt

Restore Context Switch on internal
l .

interrupts followed by
external interrupt

After the interrupt routine has been serviced, return can be given back to theinter-
rupted task by recovering r0 to r12. Reset the SPSR and load the link register and
the PC from the stack frame:

LDM A sp_svc!, {r0-r12, Ir}
MSR spsr_svec, Ir
LDM A sp_svc!, {Ir, pc}”

12¢yc

Interrupt handling 43

Interrupt handling

Prioritized interrupt handler (1) - simple

Usage Handles prioritized interrupts.
Interrupt latency Low
Advantages Deterministic Interrupt Latency since the priority level is

identified first and then the serviceis called after the lower
priority interrupts are masked.

Disadvantages Thetimetaken to get to alow priority serviceroutineisthe
same as for a high priority routine.

The simple and nested interrupt handler services interrupts on afirst-come-first-
serve basis, whereas a prioritized interrupt handler will associate a priority level
with a particular interrupt source. A priority level is used to dictate the order that
the interrupts will be serviced. This means that a higher priority interrupt will take
precedence over alower priority interrupt, which is a desirable characteristicin an
embedded system.

Methods of prioritization can either be achieved in hardware or software. Hardware
prioritization means that the handler is simpler to design since the interrupt control-
ler will provide the current highest priority interrupt that requires servicing. These
systems require more initialization code at startup since the interrupts and associ-
ated priority level tables have to be constructed before the system can be switched
on. Software prioritization requires an external interrupt controller. This controller
has to provide aminimal set of functions that include being able to set and unset
masks and read interrupt status and source.

For software systems the rest of this section will describe a priority interrupt han-

Binary

8 4 2 u
/
3 2 1 0

dier and to help with thisafictional interrupt controller will be used. The interrupt
controller takes in multiple interrupt sources and will generate an IRQ and/or FIQ
signal depending upon whether a particular interrupt source is enabled or disabled.

31 Bit Position

Figure 1.27 Simple priority interrupt handler

Interrupt handling

Prioritized interrupt handler (1) - simple

Figure 1.27 show a diagram of a priority interrupt handler it is similar to the re-
entrant interrupt handler.

Theinterrupt controller has aregister that holds the raw interrupt status (IRQRaw-
Satus). A raw interrupt is an interrupt that has not been masked by a controller.
IRQEnNabl e register determineswhich interrupt are masked from the processor. This
register can only be set or cleared using |RQEnableSet and |RQEnableClear. Fig-
ure 1.24 shows a summary of the register set names and the type of operation (read/
write) that can occur with these register. Most interrupt controllers also have a cor-
responding set of registers for FIQ, someinterrupt controllers can aso be pro-
grammed to select what type of interrupt distinction, asin, select the type of
interrupt raised (IRQ/FIQ) from a particular interrupt source.

Register R/W Description

IRQRawStatus r represents interrupt sources that are actively HIGH
IRQEnable r masks the interrupt sources that generate IRQ/FIQ to the CPU
IRQStatus r represents interrupt sources after masking

IRQEnableSet w sets the interrupt enable register

IRQEnableClear w clears the interrupt enable register

Figure 1.28 Interrupt controller registers

The registers are offset from a base address in memory. Figure 1.29 shows all the
offsets for the various registers. The offset 0x08 is used for both IRQEnable and
IRQEnableSet.

Address Read Write
ic_Base+0x00 IRQStatus reserved
ic_Base+0x04 IRQRawsStatus reserved
ic_Base+0x08 IRQEnable IRQEnableSet
ic_Base+0x0c IRQEnableClear
Figure 1.29 Register offsets

In the interrupt controller each bit is associated with a particular interrupt source. In
the example (shown in figure 1.30), bit 2 is associated with atransmit interrupt
source for serial communication.

Figure 1.30 32-bit Interrupt Control Register

Interrupt handling 45

Interrupt handling

The following defines connect the 4 interrupt sources, used in the example, to a cor-
responding set of priority levels.

PRIORITY_O EQU 2 ; Comms Rx
PRIORITY_1 EQU 1 ; Comms Tx
PRIORITY_2 EQU 0 ; Timer 1
PRI ORI TY_3 EQU 3 ; Tinmer 2

The next set of defines provides the bit pattern for each of the priority levels. For
instance for aPRIORITY_O interrupt the binary pattern would be 0x00000004 (or
1<<2).

BINARY_0 EQU 1 << PRIORITY_O ; 1<<2 0x00000004

BINARY 1 EQU 1 << PRIORITY_1 ; 1<<1 0x00000002

BINARY_2 EQU 1 << PRIORITY_2 ; 1<<0 0x00000001
BINARY_3 EQU 1 << PRIORITY_3 ; 1<<3 0x00000008

For each priority level there is a corresponding mask that masks out all interrupts
that are equal or lower in priority. For instance, MASK_2 will mask out interrupt
from Timer2 (priority=3) and CommRx (priority=2).

MASK_3 EQU PRI ORI TY_3

MASK 2 EQU MASK 3 + PRICRI

TY 2
MASK_1 EQU MASK_2 + PRICRITY_ 1
MASK_0 EQU MASK_0 + PRI CRITY_ O

The defines for the interrupt controller registers are listed below. ic_Baseisthe
base address and rest, for instance IRQSatus, are all offsets from that base address.

i c_Base EQU 0x80000000
| RQSt at us EQU 0x0
| RQRawSt at us EQU x4
| RQEnabl e EQU 0x8
| RQEnabl eSet EQU 0x8
| RQEnabl ed ear EQU Ooxc

Standard define to disable IRQ interrupts.

| _Bit EQU 0x80

Again, to begin, the handler starts with a standard entry to the interrupt handler and
place the IRQ link register on the IRQ stack.

2 I RQ_Handl er
IRQ SuB Ir_irqg,lr_irq, #4
STMFD sp_irq!l, {Ilr_irq}

46

Interrupt handling

Prioritized interrupt handler (1) - simple

Next the handler obtains the SPSR and places the content into r14 irg. Thisis pos-
sible since the link register has been saved as part of the stack. Freeing up a group
of registersfor use in processing the prioritization.

21Rg VRS ri4_irq, SPSR
STMFD sp_irq!l, {r10,r11,r12,r14 irq}

The handler needs to obtain the status of the interrupt controller. Thisis achieved
by loading in the base address of the interrupt controller in to r14 and loading r10
with ic_Base (r14) offset by IRQSatus (0x00).

3IRQ LDR r14, =i c_Base
LDR r 10, [r 14, #] RQSt at us]

The handler now needs to determine the highest priority interrupt. Thisis achieved
by testing the status information. If a particular interrupt source matches a priority
level that priority is set in r11. The method goes from lowest to highest priority.

4iro TST r 10, #BI NARY_3
MOVNE rill, #PR ORI TY 3
TST r 10, #Bl NARY_2
MOVNE riil, #PR ORI TY 2
TST r10, #Bl NARY 1
MOVNE ~ rill,#PRI ORITY_1
TST r 10, #Bl NARY_O
MOVNE ril1, #PR ORI TY_O

After this code segment r14 irq will contains the base address of the interrupt con-
troller and r11 will contain the bit of the highest priority interrupt. It is now impor-
tant to disable the lower and equal priority interrupts so that the higher priority
interrupts can still interrupt the handler. This method is more deterministic since the
time taken to discover the priority is always the same.

To set the interrupt mask in the controller the handler has to determine the current
IRQ enable register and also obtain the start address of the priority mask table.

4IRQ LDR r12,[r14_irq, #] RQEnabl e]
ADR r10, priority_masks

Note: the priority_masks are defined later on in this section.

r12 will now contain the current IRQ enable register and r10 will contain the start
address of the priority table. To obtain the correct mask, since r11 contains the bit
field (0-3) of theinterrupt, al that needsto be doneis shift Ieft 2 bits (using the LSL

Interrupt handling 47

Interrupt handling

#2). Thiswill multiply the address by 4 and add that to the start address of the prior-
ity table.

’ 4rq ‘ LDR r10, [r10, r11, LSL #2]

The new mask will be contained in r10. The next step isto clear the lower priority
interrupts using the mask. Thisis achieved by performing a binary AND with the
the mask and r12 (IRQ enabl e register) and then clearing the bits by storing the new
mask (r12) into IRQEnableClear register.

AND rl2,r12,r10

4rQ .
STR r12,[r14_irq, #1 RQEnabl ed ear]

It is now safe to Enable IRQ interrupts by setting the | bit in the CPSR to 0.

4IRQ MSR rl4_irgq, cpsr
BI C rl4_irq,rld_irq,# _BIT
MSR cpsr_c, rld_irq

Lastly the handler needs to jump to the correct service routine. Thisis achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this allows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table has to follow the instruction that loads the PC.
There isaNOP in between the jump table and the instruction that manipul ates the
PC due to the fact that the PC will be pointing one instruction ahead (or 4 bytes).

5, LDR pc, [pc, r11, LSL#2]
IRQ NCP
DCD service_tinmer0
DCD servi ce_commt x
DCD servi ce_commr X
DCD service_tinmerl

Thefollowing is the priority mask table. The masks arein the interrupt source bit
order.

priority_masks
DCD

MASK_2
DCD MASK_1
DCD MASK_0
DCD MASK_3

Here is an example of start of the service routine for the timerO service routine.

6&7|RQ service_tiner0
STMFD sp_irq!, {r0-r9}

<insert service routine>

48

Interrupt handling

Prioritized interrupt handler (2) - standard

The service routine is then inserted after the header above. Once the service routine
is complete the interrupt sources must be reset and control is passed back in the

interrupted task.

IrQ

LDWFD r13_irq!

{r0-r10}

The handler must disable the IRQ’s before the interrupt can be switched back on.
Thisis achieved using the standard method.

8irRQ

MRS
ORR
MSR

rii1
rii,

cpsr_

cpsr
ri1, # _BIT
c, ri1

di sabl e bit

The external interrupts can now be restored to their original value. This can be
achieved since r12 still contains the original value. Thisrelies on the fact that the
service did not modify ri2.

8irRo

LDR
STR

rii1
riz,

=i c_Base
[r11, #1 RQEnabl eSet]

To return back to the interrupted task, context is restored and the original SPSR is
copied back into the IRQ SPSR.

9RrQ

LDVFD
MSR
LDWFD

sp!, {r11,r12,r14}
spsr_cf, rl4_irq
sp!, {pc}”

Prioritized interrupt handler (2) - standard

Usage

Handles higher priority interruptsin a shorter timeto
lower priority interrupts.

Interrupt latency

Low

Advantages

Higher priority interrupts treated with greater urgency
with no duplication of code to set external interrupt masks
etc.

Disadvantages

Thereis a time penalty since this handler requires two
jumps resulting in the pipeline being flushed each time a
jump occurs.

A simple priority interrupt handler tests all the interrupts to establish the highest
priority. An alternative solution is to branch early when the highest priority inter-

Interrupt handling

49

Interrupt handling

rupt has been identified. The prioritized interrupt handler follows the same entry
code as for the simple prioritized interrupt handler.

T

3. ‘ Obtain external interrupt ‘
status

Isapriority 1
interrupt?

-~ ~
< - Isapriority 2> > »

~ interrupt? -~
~ ~

v
5. Disable lower priority
interrupts

6. ‘ Enable Externa Interrupts

return |
to task 7. ‘ Enable Internal Interrupts

Service
Interrupt

Interrupt

Restore Contect

Figure 1.31 Part of a prioritized interrupt handler

The prioritized interrupt handler has the same start as a simple prioritized handler
but intercepts the interrupts with a higher priority earlier.

Interrupt handling

Prioritized interrupt handler (2) - standard

Assign r14 to point to the base of the interrupt controller and load r10 with the
interrupt controller status register.

3IRQ LDR rl4_irq, =ic_Base
LDR r10, [rl4_irq, #l RQSt at us]

To allow the handler to be re-locatable the current address pointed to by the PC is
recorded into r11.

4ro MOV ri1, pc

The priority level can now be tested by testing from the highest to the lowest prior-
ity. Thefirst priority level that matches will determine the priority level of the inter-
rupt. Once amatch is achieved then a branch to the routine that masks off the lower
priority interrupts occurs.

5I RQ TST r10, #BI NARY_O
BLNE di sabl e_| ower
TST r10, #BINARY_1
BLNE di sabl e_| ower
TST r10, #BI NARY_2
BLNE di sabl e_| ower
TST r10, #BI NARY_3
BLNE di sabl e_| ower

To disable the equal or lower priority interrupts, the handler enters a routine that
first calculates the priority level using the base addressin r11 and the link register.

5, di sabl e_| ower
IRQ SUB ri11,r11,Ir_irq

r11 will now contain the value 0,8,16 or 24. These values correspond to the priority
level of the interrupt multiplied by 8. r11 isthen normalized by shifting r11 right 3
and adding the result to the address of the priority_table. r11 will equal one of the
priority interrupt numbers (0,1,2, or 3).

5IRQ LDR rl2,=priority_table
LDRB r11,[r12,r11, LSR #3]

The priority mask can now be determined since the priority level has already been
obtained. The same technique of shifting left by 2 and adding that to the r10, which
contains the address of the priority_mask.

5IRQ ADR r10, priority_nmask
LDR r10,[r10,r11, LSL #2]

Interrupt handling 51

Interrupt handling

Copy the base address for the interrupt controller into register r14 irq and use this
value to obtain a copy of the IRQ enable register in the controller and placeit into
therl2.

6IRQ LDR rl4_irq, =ic_Base
LDR ri2,[rl1l4_irq, #l RQEnable]

The new mask will be contained in r10, The next step isto clear the lower priority
interrupts using the mask. Thisis achieved by preforming a binary AND with the

mask in r10 and r12 (IRQEnable register) and then clearing the bits by storing the
result into the IRQENableClear register.

AND rl2,r12,r10

6irQ :
STR r12,[r14_irq, #| RQEnabl ed ear]

It is now safe to enable IRQ interrupts by setting the | bit in the CPSR to 0.

7IRQ MSR rl4_irq, cpsr
BI C rl4_irq,rl4_irq,#l _Bit
MSR cpsr_c, rld_irq

Lastly the handler needs to jump to the correct service routine. Thisis achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this alows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table must follow the instruction that |oads the PC.
ThereisaNOP in between the jump table and the instruction that manipul ates the
PC thisis due to the fact that the PC will be pointing one instruction ahead (or 4
bytes).

8 LDR pc, [pc, r11, LSL#2]
IRQ NOP
DCD service_tinmer0
DCD servi ce_comt x
DCD servi ce_commr x
DCD service_tinmerl

The following is the priority mask table. The masks are in the interrupt bit order.

priority_nmasks
DCD

MASK_2
DCD MASK_1
DCD MASK_0
DCD MASK_3

Thefollowing is the priority table. The priorities arein the priority order.

prority_table
DCB PRIORITY_O

52

Interrupt handling

Prioritized interrupt handler (3) - direct

DCB PRIORI TY_1
DCB PRI ORI TY_2
DCB PRIORITY_3
ALI GN

Prioritized interrupt handler (3) - direct

Usage Handles higher priority interruptsin a shorter time goes
directly to the specific service routine.

Interrupt latency Low

Advantages Uses on a single jump and saves valuable cycles to go to
the service.

Disadvantages Each service routine has to have a mechanismto set the

external interrupt mask to stop lower priority interrupts
from halting the service routine.

A direct prioritized interrupt handler branches directly to the interrupt service rou-
tine (ISR). Each ISR isresponsible for disabling the lower priority interrupts before
modifying the CPSR so that interrupts are re-enabled. Thistype of handler isrela-
tively simple since the masking is done by the service routine. This does cause min-
imal duplication of code since each service routine is effectively carrying out the
same task.

Below isa set of defines that associates an interrupt source with a bit position
within the interrupt controller. This will be used to help mask the lower priority
within the ISR’s.

bit_tiner0 EQU 0
bi t _commt x EQU 1
bi t _commr x EQU 2
bit_tinerl EQU 3

To begin, the base address of the | SR table hasto beloaded into r12. Thisregister is
used to jump to the correct ISR once the priority has been established for the inter-
rupt source.

ADR rl2, isr_table

Then identify the priority and interrupt. This is achieved by checking the highest
priority interrupt first and then working down to the lowest. Once a high priority
interrupt isidentified the PC is then loaded with the address of the appropriate ISR.

Interrupt handling 53

Interrupt handling

Theindirect address is stored at the address of theisr_table plus the priority level
shifted 2 bits to the left (a multiple of 4).

TST r 10, #Bl NARY_O

LDRNE pc, [r12, #PRI ORI TY_O, LSL #2]
TST r10, #Bl NARY_1
LDRNE pc, [r12, #PRI ORI TY_1, LSL #2]
TST r 10, #Bl NARY_2
LDRNE pc, [r12, #PRI ORI TY_2, LSL #2]
TST r 10, #BI NARY_3

LDRNE pc, [r12, #PRI ORI TY_3, LSL #2]

Note: r10 contains the IRQSatus register.

Thefollowing isthe ISR jump table. The ISR jump table ordered with the highest
priority interrupt at the beginning of the table.

isr_table
DCD service_tinmer0
DCD servi ce_comt x
DCD servi ce_commr x
DCD service_tinmerl

The service_timer0 shows an example of ISR used in adirect priority interrupt
handler. Each I SR has to change depending upon the particular interrupt source.
The source bit of the interrupt is first moved into r11.

service_tinmer0
MoV rill, #bit_tiner0

A copy the base address for the interrupt controller placed into register r14 irq and
this address plus offset is used to obtain a copy of the IRQEnable register on con-
troller and subsequently thisis placed into r12.

LDR rl4_irq, =ic_Base
LDR r12,[r14_irq, #| RQEnabl e]

The address of the priority mask table has to be copied into r10 so it can be used to
calculate the address of the actual mask. R11 is shifted left 2 positions. This give an
offset 0,4,8, or 12. This plus the address of the priority mask table address to used
to load the mask into r10. The priority mask table is the same for the priority inter-
rupt handler in the previous section.

ADR r10, priority_masks
LDR r10, [r10,r 11, LSL#2]

r10 will contain the ISR mask and r12 will contain the current mask. The binary
operation of an AND is used to merge the two masks. Then the new mask is used to
set the interrupt controller using IRQEnableClear register.

AND ri2,r12,r10

Interrupt handling

Prioritized interrupt handler (4) - grouped

STR r12, [r14, #]1 RQEnabl ed ear]

It is now safe to enable IRQ interrupts by setting the | bit in the CPSR to 0.

MRS rl4_irq, cpsr
BI C rl4,r14,#1 _Bit ; clear irq bit
MSR cpsr_c,rl4_irq

The handler can continue servicing the current interrupt unless an interrupt with a
higher priority occurs, in which case that interrupt will take precedence over the
current interrupt.

Prioritized interrupt handler (4) - grouped

Usage Mechanism for handling interrupts that are grouped into
different priority levels.

Interrupt latency Low

Advantages Useful when the embedded system has to handle a large

number of interrupts. It also reduces the response time
since the determining of the priority level is shorter.

Disadvantages Determining how the interrupts are grouped together.

Lastly the grouped priority interrupt handler is assigned a group priority level to a
set of interrupt sources. This is sometimes important when there is alarge number

of interrupt sources. It tends to reduce the complexity of the handler sinceit is not

necessary to scan through every interrupt to determine the priority level. This may

improve the response times.

The following will take the same example as used previously and group the timer
sources into group 0 and communication sources into group 1 (see figure 1.32).
Group 0 is given a higher priority to group 1 interrupts.

Group Interrupts
0 timer0, timerl
1 commtx, commrx

Figure 1.32 Group Interrupt Sources

Interrupt handling 55

Interrupt handling

The following defines group the various interrupt sources into their priority group.
Thisisachieved by using a binary OR operation on the binary patterns.

GROUP_0 EQU Bl NARY_0+BI NARY_3
GROUP_1 EQU Bl NARY_1+BI NARY 2

The following defines group the various masks for the interrupts together.

GVASK_1 EQU GROUP_1
GVASK_0 EQU AMASK_1+GROUP_0

These defines provide the connection of masks to interrupt sources. This can then
used in the priority mask table.

MASK_TI MERO EQU GVASK_0
MASK_COVMIX EQU GVASK_1
MASK_COMVRX EQU GVASK_1
MASK_TI MERL EQU GVASK_0

The below show shows the start of a standard interrupt handler.

i nterrupt_handl er

SuUB Ir,lr,#4
STMFD sp_irq,{Ir}
MRS rl4,spsr_irq

STMFD sp_irq!,{r10,r11,r12,r14}

Obtain the status of the interrupt using the standard mechanism of using an offset
from the interrupt controller.

LDR rl4_irq, =ic_Base
LDR r10, [r14_irq, #] RQSt at us]

Identify the group that the interrupt sources belong. Thisis achieved by using the
binary AND operation on the source. The letter ‘S’ post-fixed to the instructions
means update execution flag on the CPSR.

ANDS rii, r10, #GROUP_O
ANDEQS r 11, r10, #GROUP_1

r11 will now contain the highest priority group (0 or 1). Now mask out the other
interrupt sources by applying abinary AND operation with Oxf.

AND r10, r 11, #0xf

L oad the address of the lowest significant bit table and then load the byte offset
from the start of the table by the valuein r10 (0,1,2, or 3 see figure 1.33). Once the

56

Interrupt handling

Prioritized interrupt handler (4) - grouped

lowest significant bit position isloaded into r11 the handler then branchesto arou-
tine to mask out the other group.

ADR
LDRI
B

r11, 1 owest _significant_bit
B r11,[r11,r10]
di sabl e_| ower _priority

Binary Pattern

Value

0000

unknown

0001

0010

0011

0100

0101

0110

0111

1000

1001

1010

1011

1100

1101

1110

111

oflr|O|N]|O|(RP|O|W|O|FR|[O|N|O|RFR,|O

Figure 1.33 Lowest Significant Bit Table

| owest _significant_bit

DCB

0 123456789abcdef
oxff,0,1,0,2,0,1,0,3,0,1,0,2,0,1,0

Oncein the disable lower_priority interrupts routine check for spurious interrupt
(or ghost interrupts). If r1lisequal to Oxff jump to the unknown_condition routine.

di sable_l ower_priority
CWP r 11, #0xf f
BEQ unknown_condi ti on

Obtain the IRQEnNable register by offset from the ic_Base address and place the

resultinril2.

LDR

r12, [r 14, #1 RQEnabl e]

Interrupt handling

57

Interrupt handling

Find the mask by loading in the address of the priority mask and then shift the data
inrll left by 2. Add the result (value = 0,4,8,0r 12) to the priority mask address.
r10 will now contain amask to disable lower priority group interrupts from being
raised.

ADR r 10, priority_nmask
LDR r10,[r10,r11, LSL #2]

The new mask will be contained in r10, The next step isto clear the lower priority
interrupts using the mask. Thisis achieved by preforming a binary AND with the

mask in r10 and r12 (IRQEnable register) and then clearing the bits by storing the
result into the IRQENableClear register.

AND r12,r12,r10
STR r12, [r 14, #1 RQEnabl ed ear]

It is now safe to enable IRQ interrupts by setting the | bit in the CPSR to 0.

MRS r 14, cpsr
BICri14,r14, #/ RQ. QBI T
MSR cpsr_c,rl4

Lastly the handler needs to jump to the correct service routine. Thisis achieved by
manipulating r11 and the PC. r11 still contains the highest priority interrupt. By
shifting r11 left by 2 (multiplying r11 by 4) and adding it to the PC this allows the
handler to jump to the correct routine by loading the address of the service routine
directly into the PC. The jump table must follow the instruction that |oads the PC.
There isaNOP in between the jump table and the instruction that manipul ates the
PC owing to the fact that the PC will be pointing one instruction ahead (or 4 bytes).

LDR pc, [pc, r1l, LSL #2]
NOP

DCD servive_tiner0
DCD servi ce_comt x
DCD servi ce_commr X
DCD service_tinerl

The following table contains the various masks for the lower priority groups. The
table is ordered by interrupt source bit position.

priority_mask
DCD MASK_TI MERO
DCD MASK_COVMIX
DCD MASK_COMVRX
DCD MASK_TI MERL

58

Interrupt handling

ARM/Thumb interworking

ARM/Thumb interworking

ARM/Thumb interworking mechanism can vary between tool chains. To minimize
the amount of work required in implementing an embedded system which includes
both ARM and Thumb code most of the code should be writtenin C/C++. Thiswill
allow the source code to use the ARM/Thumb interworking facilities for a particu-
lar C/C++ compiler and hence minimize the amount of assembler code which needs
to be rewritten. Essentially only the following pieces of code require writing in
assembler (or in-line assembler).

* Any code that changes processor mode (e.g. User -> SVC mode) or accesses
CPSR/SPSR.

* Any code which accesses the high register (r8-r14) frequently (e.g. context
switching). Thisistool chain specific.

* Minimal veneers on exception handlers such as SWI handlersand IRQ handlers.
These handlers should do the minimum necessary in assembler before calling C
code and doing the bulk of the processing in C.

* Any code that makes use of the force user mode transfer facility of the ARM
processor (e.g. context switching user registers).

There are times when routines must be written in ARM assembly code for perfor-
mance reason (e.g. block copy routines). If these routines are to be used in Thumb
state they need to follow the rules for writing ARM/Thumb interworking assembler
(essentially, the routines need to return using a BX instruction)

When caling a function pointer in from within an ARM/Thumb kernel, the func-
tion pointer has to have bit O set to indicate a pointer to a Thumb function and clear
toindicate an ARM function. To ensure the function is called in the correct proces-
sor mode the code must use the BX instruction. The code must aso ensure that bit O
of the link register is set when calling from Thumb state to ensure that the function
correctly returnsto Thumb state. This can be achieved by writing a sequence of
veneersto call afunction pointer in registers 0 through 7 as follows.

_call _via via_r0 BX ro
_call _via_via_r1 BX rl
_call _via via_r2 BX r2
_call _via via_r3 BX r3

_call _via_via_r4 BX r4
_call _via_via_r5 BX r5
_call _via via_r6 BX ré
_call _via_via_r7 BX r7

Interrupt handling 59

Interrupt handling

When using the above table of veneersthe BL instruction should be used to call the
appropriate veneer for the function pointer which you have placed in one of the reg-
isters 0 through 7. The BL instruction in Thumb state automatically sets bit O of the
link register. For example:

LDR r2, function_pointer
BL _call _via_r2
Context Switch

A context switch iswhere a currently running task (using all the registers on the
processor) is swapped with another task that was lying dormant. Thisfirst involves
first saving al the current registers into a data structure or Process Control Block
(PCB). Once the registers are saved then the dormant or replacement task registers
can be restored from the dormant tasks PCB.

Note: scheduler determines which task is to be active next. A scheduler tendsto be
unique for a particular application and/or operating system, since the end require-
ments differ.

Task A or B - running

Timer Interrupt

v

A

Which task is
active?

Save Task A to PCB(A) Save Task B to PCB(B)

Restore Task B from PCB(B) Restore Task A from PCB(A)

L] |

Figure 1.34 Simple context switch scheduler between two tasks A and B

60

Interrupt handling

Context Switch

Figure 1.34 shows a simple scheduler that context switches between two tasks.
Basically when either task isrunning and atimer interrupt occurs the scheduler will
context switch to the other task as shown in the diagram.

Each task has their own unique PCB (see figure 1.35), respectively called
handler_taskapch str and handler_taskbpchb_str. In this example, a simple sched-
uler is used to swap between the two tasks by first determining which task is cur-
rently running and then swapping to the other dormant task. Before entering this it
isassumed ther13 irq stack pointer has been copied into alocation pointed to by
handler_irgstack_str.

Offset Task Register
-4 r14_usr
-8 r13_usr
-12 rl2_usr
-16 rll_usr
-20 r10_usr
24 r9_usr
-28 r8_usr
-32 r7_usr
-36 r6_usr
-40 r5_usr
-44 r4_usr
-48 r3_usr
-52 r2_usr
-56 rl_usr
-60 r0_usr
-64 rl4 irq
-68 SPSR

Figure 1.35 Task Process Control Block (PCB)

Thefirst operation isto abtain the address of the currently running task. In this
example, the current task is stored at address of handler_currenttaskaddr_str. It is
simply a matter of loading the address and then loading the contents of the address
into aregister. In this example, 60 bytes (15 words/registers) are subtracted from
the start of the PCB. This makesit easier to save all the registers by using the

Interrupt handling 61

Interrupt handling

ascending and descending multiple register load and store instructions (STM/
LDM).

LDR r13_irqg, =handl er_currenttaskaddr_str
LDR r13_irqg, [r13_irq]
SuB r13_irqg, ri13_irq, #60

r13 irqisthen pointing to rO_usr. The current user task registers are then stored
into the PCB by using ‘' post-fixed at the end of the STMIA (ascends memory)
instruction. Then a copy is made of the SPSR into rO since r0 can be used as a
scratch register since it has already been stored into the PCB. The ‘!" has not been
used so r13 irqgisstill pointing to -60 offset, this means it can be used to store the
rest of the PCB. Thisis achieved using STMDB (descends memory) by saving rO
(SPSR) and r14 irq (return address of the interrupted task) into the PCB.

STM A r13_irqg, {r0-r14}»
MRS r0, SPSR
STMVDB r13_irq, {r0,r14_irq}

The current task has had all the registers stored into the PCB. The new task regis-
tersnow haveto beloaded into the register set. Thisisachieved by first copying the
address of the location the next task PCB isheld. This addressis called
handler_nexttask str. Again, -60 bytes are removed from the start of the PCB. This
is so the best possible use of the load and store multiple register instruction are
achieved with descending and ascending options.

LDR r13_irqg, =handl er_nexttask_str
LDR r13_irqg, [r13_irq]
SuB r13_irqg, ri13_irq, #60

<task swap code>

At this point there has to be code to update the current and next tasks so that when
the next context switch occurs the handler_currenttask str holds the
handler_nexttask _str data and vice-versa. The next step is to obtain the SPSR and
IRQ link register and placeitintorOandr14 irq respectively. Then copy rOinto the
IRQ SPSR.

LDVDB r13_irq, {r0,r14_irq}
MSR spsr_cxsf, r0

The user banked registers can now be restored. This is achieved by using the ‘"
again to restore the user register for the next task. Note a NOP should always fol-
low LDMIA instruction with ‘" incase aregister is corrupted.

LDM A r13_irq, {r0-r14}»
NOP

62

Interrupt handling

Context Switch

It is now important to return the original IRQ stack. Thisisachieved by loading the
address of the IRQ stack into r13_irg. Then load r13_irq with the 32-bit word con-
taining the IRQ stack back into r13 irq.

LDR r13_irqg, =handler_irqgstack_str
LDR r13_irq,[r13_irq]

Lastly the context can relinquish control of the processor and return back to the
interrupted task. Thisis achieved by subtracting from the IRQ link register.

SUBS pc, rl4_irq, #4
The following holds the address of the currently run task. It is assumed that the ini-
tialization code sets this address correctly.

handl er _currenttaskaddr_str
DCD 0x0

The following holds the address of the next PCB to be run.

handl er _nexttask_str
DCD 0x0

Store a copy of the IRQ stack thus freeing up the r13_irq for other uses.

handl er _i rgstack_str
DCD 0x0

This context PCB for task A. The ‘% 68’ indicated 68 bytes.

handl er _t askabot t om
% 68
handl er _t askapcb_str

Likewise for task B PCB.

handl er _t askbbot t om
% 68
handl er _t askbpcb_str

Note: a context switch should not occur within a handler that is nested (been recur-
sively invoked). Thisis because the registers being switched will be the previous
handler that was invoked instead of the application registers. A counter variable
can be used to indicate the depth of a nested handler. If zero then a context switch
can be allowed to occur.

Interrupt handling 63

Interrupt handling

Semaphore

A semaphoreisaway of locking a process from interfering with data. Sharing data
is useful for message passing and multi-processing environments. The mechanism
is called inter-processor communication.

unsi gned i nt senaphore;

The semaphore must make use of the SWP instruction. The SWP instructionisan
atomic instruction which holds the CPU bus until the SWP transaction is complete.
The swaps the contents of aregister and memory in a single instruction.

voi d nutex_gatel ock (void)

spin:

MoV rl, &semaphore
MoV r2, #1

SWp r3,r2,[r1]

CwWP r3, #1

BEQ spin

voi d nut ex_gat eunl ock (voi d)

{

asm

{

MoV rl, &semmphore
MoV r2, #0
SWP ro,r2,[r1]

}

Debug

Interrupt handlers can be difficult to debug and thus more time should be spent on
the planning and understanding of the interrupt mechanism. A careful design can
avoid race conditions or deadlock occurring. A simple way to help debug systems
isto sow the system down and use asimple LED to indicate when the interrupt
handler code is being executed or not. Obvioudly, if there is Embeddedl CE/Trace/
Logic Analyzer technology then these devices can be used to help debugging the
code. If there is a spare seria port or communication channel then it can be used to

Interrupt handling

General Notes for Real Time Operating System

record history of activities. Thiswill require post analyzing of the history log to
determine the source of the problem.

General Notes for Real Time Operating System

Below are a set of general notes for designing an interrupt handler.

* Theexample code in this chapter assumes a perfect system unfortunately thisis
seldom the case. There are times when ghost or rogue interrupts occur. It is up
to the designer of the interrupt handler to anticipate these spurious interrupts
and handle them appropriately.

* Reducing the number of registers being transferred by LDM and STM will
reduce the interrupt latency since the ARM processor will compl ete the execu-
tion of the current instruction in the pipeline.

* [fitisarequirement that the RTOS be called from User mode in addition to
System or Supervisor (SVC) mode then you will need to use the SWI interface
to call the various RTOS API’s.

e The RTOS must run in System or SV C mode in order to perform operations
which are prohibited in user mode such as enabling or disabling interrupts. The
SWI mechanism provides a means whereby a user level task can call the RTOS
in SVC mode.

* If the embedded system isto be callable only from System or SVC mode there
is no requirement to use the SWI interface. This can significantly simplify the
design of the ABI.

* If the RTOS isdirectly linked with the application RTOS, calls can be made
using asimple BL instruction (i.e. adirect C function call).

e If the RTOS must be separately linked then the application must call the RTOS
indirectly. Typically thisis done viaatable of function pointers which isinitial-
ized by the RTOS on startup.

* Many RTOS'srequire asingle entry/exit point. There are a number of reasons
for this requirement. The RTOS may need to perform rescheduling on exit from
an RTOS call. Without a single entry/exit call mechanism each RTOS function
must arrange to call the scheduler on exit.

* A debug monitor may need to monitor callsto the RTOSto allow breakpointsto
be set on system calls or to allow profiling of RTOS calls.

Interrupt handling 65

Interrupt handling

* Thedesign of software interfaces may limit the number of arguments that can
be passed to the RTOS. For example, using a SWI interface limits the number of
arguments to about 11 as arguments must be passed in registers (they cannot be
passed on the stack as the SWI may be serviced in a different mode from the
caller and hence not be able to access the callers stack without special trickery).

* Ingeneral, handling calls such as 'printf’ is difficult as the RTOS does not know
how many arguments to save on the stack.

* The RTOS should not disable FIQ at any point in the RTOS as to do so will
reduce the FIQ interrupt latency. If the application is using the FIQ interrupt to
drive afast device such as a DSP co-processor, or a software DMA even asmall
reduction in the interrupt latency could adversely affect the system. Asthe
RTOSwill not use FIQ in any form leaving FIQ enabled at critical pointswithin
your RTOS will not matter as the interpretation of FIQ is entirely application
dependent. This does, however, place restrictions on the applications use of
FIQ. For example, the application cannot make any RTOS system call within a
FIQ routine.

Summary

This chapter introduces the definition of events, interrupts and exceptions. When a
particular event occurs how the ARM processor handles and assigns a priority
level. The mechanism for enabling and disabling interrupts, installing and chaining
handlers and designing stack layouts. The chapter then goes through the various
different types of handlers and how they are implemented. Finally, how to writing a
handler in Thumb code, debugging an interrupt handler and the various problems
associated with interrupt handlers for an RTOS. Summary of the various handler
areasfollows:

Handler IL 1>10 N P CD
Smple non-nested interrupt handler high nr n n n
Nested interrupt handler nedium nr y n n
Re-entrant Interrupt Handler low nr y Optional n
Prioritized interrupt handler (1) - Smple low nr y y n
Prioritized interrupt handler (2) - Sandard low nr y y n
Prioritized interrupt handler (3) - Direct low nr y y y
Prioritized interrupt handler (4) - Group low r y y y

66

Interrupt handling

Summary

Where:

IL
1>10

NR

. Interrupt latency

. Greater then 10 interrupts

. Nested interrupt handler

. Interrupts can be prioritized
: Not recommended

: recommended

Interrupt handling

67

Interrupt handling

68

Interrupt handling

	Interrupt handling
	CHAPTER 1 Interrupt handling
	ARM Processor
	Event priorities
	Vector table
	Controlling Interrupts
	Returning from an interrupt handler
	Setting up the interrupt stacks
	Installing and chaining interrupt handlers
	Simple non-nested interrupt handler
	1. External source (for example from an interrupt controller) sets the Interrupt flag. Processor ...
	2. Upon entry to the handler, the handler code saves the current context of the non banked regist...
	3. The handler then identifies the interrupt source and executes the appropriate interrupt servic...
	4. ISR services the interrupt.
	5. Upon return from the ISR the handler restores the context.
	6. Enables interrupts and return.

	Nested interrupt handler
	Re-entrant interrupt handler
	Prioritized interrupt handler (1) - simple
	Prioritized interrupt handler (2) - standard
	Prioritized interrupt handler (3) - direct
	Prioritized interrupt handler (4) - grouped
	ARM/Thumb interworking
	Context Switch
	Semaphore
	Debug
	General Notes for Real Time Operating System
	Summary

