
www.avrbeginners.net

C/USB Tutorial

USB Control Transfers with LUFA

Author: Christoph Redecker1 1 With lots of help from Dean Camera,
the author of LUFA.Version: 1.1.3

This tutorial is licensed under a Creative Commons Attribution–NonCommercial–
NoDerivs 3.0 Unported License:
http://creativecommons.org/licenses/by-nc-nd/3.0/.
Permissions beyond the scope of this license may be available at
http://www.avrbeginners.net.

http://www.avrbeginners.net
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.avrbeginners.net


1

Getting to grips with USB is not easy. The USB speci-
fication is 650 threatening pages long. Fortunately, there is a
layer of abstraction that mortals can actually understand: the
USB device framework. It is described in chapter 9 of the USB
specification.2 In this tutorial, it is assumed that you have read 2 You can download the USB specifica-

tion at http://www.usb.organd understood this very chapter. You can also have a look at
other sites on the internet which try to explain USB: “USB in
a NutShell”3 at Beyond Logic does a good job. In fact, many 3 http://www.beyondlogic.org/

usbnutshell/diagrams in this document are redrawings of those found on
that site.

In the AVR world, LUFA4 (Lightweight USB Framework for 4 http://www.fourwalledcubicle.
com/lufa.php; the LUFA realease used
in this tutorial is 120219.

AVRs) takes care of all the USB related stuff up to the device
framework level. At this level, we first need to talk about
endpoint 0, which every USB device must have, and the overall
structure of USB control transfers. LUFA offers some bits and
pieces that we can use to process control requests. This is fairly
easy to figure out once you’ve found the relevant functions in
the LUFA documentation. But there is more to it, because Dean
(the author of LUFA) has included some convenience functions.
They can make the USB code a bit more readable.

An 8–channel RC servo controller will serve as a “real world”
example. We will create a simple interface for it and call that
from the USB code. However, the servo controlling code is not
part of this tutorial.

Endpoint 0 and Control Transfers

Endpoint 0 is the endpoint used for device enumeration. During
enumeration, the host assigns an address to the device and
reads device information, such as the device class. The host
does so by sending control requests to the device, and the
device will respond accordingly. LUFA takes care of all that
almost automagically once we have defined the device and
configuration descriptors. We could now lean back and say “So
why do I need to understand it? LUFA does it for me!”, but
control requests can also be used for our own stuff.

The Setup Transaction

Control transfers always start with a Setup transaction, followed
by optional Data transactions, and are terminated with a Status
transaction. The Setup transaction consists of the SETUP token
(which contains the device address and the endpoint number),
a data packet (which contains the setup packet, which in turn
specifies the details of the control request) and, finally, the
handshake.

http://www.usb.org
http://www.beyondlogic.org/usbnutshell/
http://www.beyondlogic.org/usbnutshell/
http://www.fourwalledcubicle.com/lufa.php
http://www.fourwalledcubicle.com/lufa.php


2

The device can acknowledge the request by sending an ACK In USB terms, the “device” is called
“function”. I’m including this note here
to make clear that I’m not very serious
about using correct USB terms.

packet to the host in the handshake transaction. It is not allowed
for the device to send a STALL or NAK packet. The following
figure summarises the setup transaction:

Indication of transfer direction:

Host-to-Device

Device-to-Host

SETUP Data 0 ACK

Data Error

Setup Error

Token Packet Data Packet Handshake Packet

Errors in the setup token or data packet are indicated by the
absence of an ACK sent by the device.

When a SETUP token has been received by the AVR USB con-
troller, the RXSTPI flag in UEINTX is set. LUFA will recognise
that and fire EVENT_USB_Device_ControlRequest(). This func- There are many more events in LUFA.

See Modules→USB Core→USB Events.tion can be implemented by the user to catch control requests.
The user can choose to

• do nothing about the request and leave the processing to
LUFA,

• process the request, but let LUFA do its own processing as
well,

• process the request and signal to LUFA that the request must
not be touched any more.

When the control request event is fired, LUFA has already
received the data packet. We do not need to worry about that.
The information contained in the data packet is the setup packet,
which details what the request is and what parameters go with
it, as specified in the USB specification, section 9.3. LUFA fills
this information into a structure which has exactly the data
fields described in that USB section. This structure is called
— not surprisingly — USB_ControlRequest. All information This behaviour is described in the LUFA

documentation in
Modules→USB Core→USB Events
→EVENT_USB_Device_ControlRequest().

about the request is therefore available to the user when the
control request event is fired, ready to be processed.

Now if the user application has decided to process the data,
but let LUFA do its own processing as well, there is not more
to do than exit the event handler. However, if LUFA may not do
any further processing, the user application needs a way to tell
LUFA about that. This is done by calling Endpoint_ClearSETUP().
This function clears the RXSTPI flag, which has three effects:

• the setup packet is ACKed to the host, Clearing the control endpoint bank is
important, as it frees the endpoint for
future USB packets.• the endpoint bank is cleared,



3

• LUFA will not touch the request any more or try to process
it.

So in the end, the user must know two things about the setup
transaction: LUFA fires an event when a setup token and the
associated setup packet have been received. The user can decide
to process it and, independently, choose to acknowledge the
packet.

What happens if the control request contained invalid data?
For any further USB traffic to happen, the control endpoint bank
must be cleared, which also acknowledges the setup packet.
The only way to signal to the host that there was an error is Error management is not part of this

tutorial. How it can be implemented
depends on the application.

during the status transaction, which is placed at the end of the
whole control transfer, after the optional data transaction. We
will first go into detail about the data transaction, and then get
to the status transaction.

The Data Transaction

When the setup packet has been received, the direction of the
data transaction is also known. It is specified in bit 7 of the
bmRequestType field of the setup packet, which is of course also
included in USB_ControlRequest. If the direction is from host The request type flags can be

extracted with the macros de-
scribed in LUFA→Modules→USB
Core→Standard USB Requests.

to device, it starts with an OUT token:

OUT Data x ACK

NAK

STALL

Data Error

Token Packet Data Packet Handshake Packet

The control endpoint size is limited to 8 bytes, so if the host The setup data contains exactly 8 bytes,
which is why the endpoint size limita-
tion was not of any relevance for the
setup transaction.

wants to write more data than that, multiple data transactions
are necessary. Each transaction then starts with an OUT token,
followed by the data packet and a handshake packet. The device
can, instead of ACKing the data, send a NAK or STALL, or let
the packet time out.

LUFA provides a number of different ways to receive the
data packets. The main difference is between the functions
that can operate on any endpoint (including endpoint zero)
and those which have been written specifically for the control
endpoint. The latter take into account that the data transactions
are followed by a status transaction. Those functions will be Endpoint_Read_xx(...),

Endpoint_Read_Stream_xx(...):
see LUFA→USB Core→Endpoint Man-
agement.

discussed when the status transaction has been explained.
The “normal” endpoint functions can again be split into two



4

groups: those which handle primitive data types and those
which handle stream–like data. In either case, an ACK is sent to
the host when a full packet has been received. The last packet,
however, will not be “finished”, even if it was a full packet. This
has to be done by the user, who needs to send a final ACK.
LUFA provides the function Endpoint_ClearOUT() for that. Endpoint_ClearOUT():

see LUFA→USB Core→Endpoint
Management→Endpoint Packet
Management

The advantage of not sending the last ACK automatically
is that the user application can direct the received data to sev-
eral different destinations (scattering) by using multiple calls
to (possibly different) receive functions. Only the end of the
transmission must be indicated to the host. The user application
knows how many bytes the host will send, as the host has to See USB specification section 9.3.5 for

more information about the wLength
field.

send exactly the number of bytes indicated in the wLength field
of the setup packet.

If the bmRequestType of the setup packet field indicated an
IN transaction, the device has to send data to the host:

IN Data x ACK

STALL Data Error

NAK

IN Token Error

Token Packet Data Packet Handshake Packet

Again, it is possible that multiple data packets are needed, Endpoint_Write_xx(...),
Endpoint_Write_Stream_xx(...):
see LUFA→USB Core→Endpoint Man-
agement.

and the basic algorithm is the same as with host–to–device
transactions. The relevant LUFA functions can be chained
together, and will clear the IN endpoint bank after each full
packet, but not after the last packet. The final packet has to be
sent explicitly by calling Endpoint_ClearIN(). Endpoint_ClearIN():

see LUFA→USB Core→Endpoint
Management→Endpoint Packet
Management.The Status Transaction

When the data has been transferred to or from the device, the
control transfer is finished with a status transaction. When the
host sent data to the device, the status transaction starts with
an IN token:



5

IN Data 0 ACK

(Zero Length)

STALL

NAK

Token Packet Data Packet Handshake Packet

Essentially, the device ACKs the whole data transaction by
sending an empty data packet to the host during the status
stage. This is done by simply clearing the IN token by calling
Endpoint_ClearIN(). The host must then ACK the empty data
packet, but nothing more has to be done by the user application.

When the host previously received data from the device, the
status transaction starts with an OUT token:

OUT Data 0 ACK

(Zero Length) STALL

NAK

Token Packet Data Packet Handshake Packet

This time the host ACKs the whole data transaction with an
empty data packet, and the user application must ACK the
empty data packet by calling Endpoint_ClearOUT().

LUFA functions for the Control Endpoint

Many control transfers end up with a report being sent to
the device or to the host. These might have been stored in a
structure, an array, or whatever else contiguous memory region
— they could be written to the endpoint with a single call to the
various read or write functions and wouldn’t require multiple
calls. This is the situation where LUFA’s control endpoint–
specific functions are convenient.

These functions are used in the data stage of the control Endpoint_Write_Control_Stream_xx(...),
Endpoint_Read_Control_Stream_xx(...):
see LUFA→USB Core→Endpoint Man-
agement.

transfer, instead of the normal read or write functions. They
send or receive full packets as needed, but — in contrast
to the normal read or write functions — also clear the end-
point bank after the final packet. The application can di-
rectly proceed with the status stage by finally clearing the
status transaction. Another convenience function is provided
here: Endpoint_ClearStatusStage(), which internally calls Endpoint_ClearStatusStage():

see LUFA→USB Core→Endpoint
Management.

Endpoint_ClearIN() or Endpoint_ClearOUT(), depending on
the direction bit received in the setup packet.

In the next section we’ll put together an interface for a servo



6

controller, using different kinds of LUFA functions to manage
control transfers. Both the normal functions and those specific
to control endpoints will be used.

Example Code

Every LUFA–based application must call USB_Task() periodi-
cally in order to handle USB. This function processes all USB–
related events and calls the appropriate event handlers. One
of them is EVENT_USB_Device_ControlRequest() (this was out-
lined above). Exactly this handler has to be filled with life now.
We start by outlining the control requests we want to handle
and how these are identified once they have been received.

An RC servo controller might have 4 basic functions:

void Servo_set(uint8_t channel, uint16_t value): This func-
tion sets one channel to the given value; The allowed range for servo range is

assumed to be 0 (full left) to 65 535 (full
right).void Servo_setAll(uint16_t* values): This function sets all

servo channels to the values pointed at by values;

uint16_t Servo_get(uint8_t channel): This function returns
the value of a given channel;

void Servo_getAll(uint16_t* dest): This function reads all
servo channels and returns them in the array pointed at by
dest.

These functions need an equivalent on the USB side of things,
as USB doesn’t know about these functions. This is done with a
bunch of constants:

#define SERVO_CMD_SET 0 These constants will also be needed on
the PC side, so it is a good idea to put
them into a seperate header file!

#define SERVO_CMD_SETALL 1

#define SERVO_CMD_GET 2

#define SERVO_CMD_GETALL 3

These constants will indicate the desired operation in the bRequest
field of the setup data. But there are more fields in the request
structure to be analysed before the application code can decide
which, if any, action is to be taken. A close look at the constants
used above reveals that SERVO_CMD_SET is equal to GET_STATUS, The standard device requests are de-

scribed in the USB specification, section
9.4.

which is a standard device request. The standard device re-
quests are standard requests defined in the USB specification,
and we are not allowed to override them. However, we are free
to implement vendor specific or class specific requests. This is
indicated in the bmRequestType field of the setup data along LUFA provides macros for extract-

ing information about the request
type and recipient. See LUFA→USB
Core→Standard USB Requests.

with the recipient of the request, which can be the device, one
of the device’s interfaces, an endpoint or even some unspecified
recipient.



7

For now, all commands are class specific and addressed to the
device. The “set” requests are host–to–device, and the “get” This is by no means some kind of “best

practice.” It works, that’s all.requests are device–to–host. All these selection criteria can be
put into our application’s control request handler, which then
chooses to act on the request, or not (effectively passing the
request on to LUFA, which then tries to process it as a standard
request):

void EVENT_USB_Device_ControlRequest()

{

if(((USB_ControlRequest.bmRequestType & CONTROL_REQTYPE_TYPE)

== REQTYPE_CLASS)

&& ((USB_ControlRequest.bmRequestType & CONTROL_REQTYPE_RECIPIENT)

== REQREC_DEVICE))

{

if ((USB_ControlRequest.bmRequestType & CONTROL_REQTYPE_DIRECTION)

== REQDIR_HOSTTODEVICE)

{

switch(USB_ControlRequest.bRequest)

{

case SERVO_CMD_SET:

process_SERVO_CMD_SET();

break;

case SERVO_CMD_SETALL:

process_SERVO_CMD_SETALL();

break;

}

}

else

{

switch(USB_ControlRequest.bRequest)

{

case SERVO_CMD_GET:

process_SERVO_CMD_GET();

break;

case SERVO_CMD_GETALL:

process_SERVO_CMD_GETALL();

break;

}

}

}

}

The control request handler first checks if the request is class
specific and addressed to the device (that is, not to an interface
or an endpoint). It then narrows down the request in switch
statements, one for each direction. If no match is found, the



8

request is not handled, but passed to LUFA instead. Again, this
could be refined with error checking and reporting.

The first command (SERVO_CMD_SET) has only two param-
eters, a channel number and a value, which fit in the setup
data structure’s wIndex and wValue fields, respectively. The These fields are used in standard

requests to select device descriptors,
strings and such. They are used here
in an analogous way; the parameters
could also be passed as part of the data
transaction.

command is finally handled in its own function:

void process_SERVO_CMD_SET()

{

/* marks the command as "accepted" by the

application, so that LUFA does not process it: */

Endpoint_ClearSETUP();

/* mark the whole request as successful: */

Endpoint_ClearStatusStage();

/* process command parameters: */

Servo_set((USB_ControlRequest.wIndex & 0x07), The index is masked with 0x07 to pre-
vent memory corruption above an array
with 8 elements.

USB_ControlRequest.wValue);

}

In this function, it is assumed that the channel number in the
wIndex field is valid. There is no error checking and handling.
There is also no data transaction after the setup data has been
transmitted, because all parameters fit into the setup data struc-
ture.

The next command is used to set all servo positions at once.
The channel information is not necessary any more, but the
overall amount of parameter data has increased to 16 bytes:

void process_SERVO_CMD_SETALL()

{

uint16_t uiServoValues[8];

Endpoint_ClearSETUP();

/* read data from endpoint */ The thrid argument of Endpoint_Read_
Stream_LE is used for monitoring the
progress of longer, multi–packet trans-
actions. We simply don’t need it here.
Zero is a safe value in this case.

Endpoint_Read_Stream_LE(uiServoValues, 16, 0);

/* clear last data packet */

Endpoint_ClearOUT();

/* wait for the final IN token: */

while (!(Endpoint_IsINReady())); Endpoint_IsINReady():
see LUFA→USB Core→Endpoint
Management→Endpoint Packet
Management.

/* and mark the whole request as successful: */

Endpoint_ClearIN();

/* process command parameters: */

Servo_setAll(uiServoValues);

}

This variant used the generic endpoint read function and not
the function specific to control endpoints and also does not use
the convenience function for clearing the status transaction. In
this case Endpoint_ClearIN() is used: the host sends an IN



9

token after all data packets have been sent to the device, which
is in turn the request to the device to ACK the whole control
transfer with an empty data packet. This request is ACKed
with the final call to Endpoint_ClearIN(). Again, there is no
error checking.

The above function can be rewritten using the provided con-
venience functions:

void process_SERVO_CMD_SETALL()

{

uint16_t uiServoValues[8];

Endpoint_ClearSETUP();

/* read data from endpoint */

Endpoint_Read_Control_Stream_LE(uiServoValues, 16);

/* and mark the whole request as successful: */

Endpoint_ClearStatusStage();

/* process command parameters: */

Servo_setAll(uiServoValues);

}

There are really no surprises in the “get” functions. For
single channels:

void process_SERVO_CMD_GET()

{

/* get value from servo driver */

uint16_t uiServoValue = Servo_get(USB_ControlRequest.wIndex);

Endpoint_ClearSETUP();

/* write data to endpoint */

Endpoint_Write_16_LE(uiServoValue);

/* send packet */

Endpoint_ClearIN();

/* and mark the whole request as successful: */

Endpoint_ClearStatusStage();

}

In this case, one of the functions for primitive data types has
been used for writing data to the endpoint. We could have used
the stream function instead, by replacing

Endpoint_Write_16_LE(uiServoValue);

with

Endpoint_Write_Stream_LE(&uiServoValue, 2, 0);

with no further changes to the code. The variant for eight
channels works the same way, just the local variable for tem-
porarily storing the values and the function for reading them
are replaced:



10

void process_SERVO_CMD_GETALL()

{

uint16_t uiServoValues[8];

Endpoint_ClearSETUP();

Servo_getAll(uiServoValues);

Endpoint_Write_Stream_LE(uiServoValues, 16, 0);

Endpoint_ClearIN();

Endpoint_ClearStatusStage();

}

What’s Left

This was a tutorial about handling control transfers with LUFA.
It was not about the general structure of a LUFA–powered
application, and it didn’t explain how to control RC servos with
an AVR. The general structure of LUFA–powered applications
can be seen in the numerous LUFA demos, like the mouse
demo or its low–level equivalent. They also show how control
transfers are handled in a bigger context.

There are many ways of controlling RC servos with an AVR.
One of them can be picked out and adapted to the interface
used in this tutorial. Some are easy to implement, some not;
some eat up some special function of the AVR, some don’t;
some use external logic to simplify the code or improve timing.
Most of them are worth knowing.

Revision History

1.1 Changes:

• Spelling, grammar and such,

• updated request type mask CONTROL_REQTYPE_DIRECTION,
which had a different name in some previous LUFA re-
lease.

1.0 Initial release


	Endpoint 0 and Control Transfers
	Example Code
	What's Left
	Revision History

